
THÈSE DE DOCTORAT DE

L’UNIVERSITÉ D’ORLÉANS

ÉCOLE DOCTORALE N° 551
Mathématiques, Informatique, Physique
Théorique et Ingénierie des Systèmes

par

ZUOKUN OUYANG

Time Series Forecasting: From Econometrics to Deep Learning
Thèse présentée et soutenue à Orléans, le 11/07/2023
Spécialité de doctorat : Sciences et Technologies Industrielles, Traitement du Signal
Unité de recherche : Université d’Orléans, INSA CVL, Laboratoire PRISME (EA 4229)
Convention CIFRE avec ANRT N° 2019/0551

Rapporteur.trice.s avant soutenance :

Karine ZEITOUNI Professeure UVSQ, Université Paris-Saclay, France
Romain TAVENARD Professeur Université de Rennes 2, France

Composition du Jury :

Examinateur.trice.s : Paul HONEINE Professeur - Université de Rouen Normandie
Karine ZEITOUNI Professeure - UVSQ, Université Paris-Saclay
Romain TAVENARD Professeur - Université de Rennes 2
Sylvie TREUILLET Maître de Conférences (HDR) - Université d’Orléans

Directeur de thèse : Philippe RAVIER Professeur - Université d’Orléans
Co-encadrante : Meryem JABLOUN Maître de Conférences - Université d’Orléans

Invité.e.s :

Benoit LAHAYE Président-Directeur Général, ATTILA
Natacha OLIVIER Manager Business Unit Innovation, La Technopole d’Orléans

To my parents Jia GAO and Weiqing OUYANG,
for their unconditional love and support.

Acknowledgments

Similar to many other journeys like Harry Potter’s Hogwarts and Alice’s wonderland, my
Ph.D. journey at the PRISME Laboratory, University of Orléans, INSA-CVL was full of
adventures. There were bad times, especially during the COVID-19 pandemic period, but
I have still enjoyed being a doctoral student at PRISME. This thesis cannot be completed
without the help of many people. Some of them have helped me directly with this thesis,
while others have given their help in other forms or impacted my worldview. I am grateful
to have had a chance to meet, work with, and learn from them. In the following, I would
like to express my sincere gratitude to:

To my supervisors, Prof. Philippe RAVIER and Assoc. Prof. Meryem JABLOUN
at the University of Orléans, INSA-CVL, PRISME. I want to thank Philippe for his
patient guidance, thoughtful advice, and tremendous support. I also want to thank
Meryem for her dynamic discussion, rigorous revision, and humorous exchanges. As an
old Chinese proverb says, “A teacher is one who imparts knowledge, teaches skills, and re-
solves doubts.（师者，所以传道受业解惑也。——唐·韩愈《师说》）”. As supervisors,
Philippe and Meryem are competent and strict. As friends, they are sincere and caring.
I highly appreciate Philippe and Meryem for all they have done for me on this journey.

To the CEO of ATTILA, Mr. Benoit LAHAYE, for his trust, support, and encour-
agement. He gave us a chance to complete this industrial thesis and has provided every
possible company resource. I also want to thank other company members, in particular:
Mr. Pascal SIDOT, Mrs. Mylène MARTIN, Mrs. Marion FRICOT, Ms. Manon VIOSSAT,
Mrs. Leslie FALLEAU, Mrs. Laure LAHAYE, and Mrs. Mirella TECHER.

To Prof. Frédéric ROS, Dr. Natacha OLIVIER, and Dr. Gilles MARY from Orléans
Val de Loire Technopole, for their great help with my doctor’s application.

To Prof. Karim ABED-MERAIM, Assoc. Prof. Sylvie TREUILLET, and Mrs. Denise
PELIZZARI CARMES. I want to thank Karim for his philosophical thought and encour-
agement. I also want to thank Sylvie and Denise for their enormous help these years
since I first came to France. My gratefulness also goes to my other colleagues at the
PRISME Laboratory, especially: Assoc. Prof. Rodolphe WEBER, Assoc. Prof. Raphaël
CANALS, Assoc. Prof. Aladine CHETOUANI, Dr. Antonio DAVALOS, Dr. Dian BAH,
Kamel LADROUZE, and Mohamed Amine KERKOURI.

To four of my dear friends, especially Dr. Guanglie OUYANG, Dr. LE Trung Thanh,
Zihao LYU, and Min WANG, for their friendship, support, and encouragement. Guanglie
is one of the first people I met in France. He is one of my closest friends. We are like
real brothers as we share the same family name (even though we are from different parts
of China) and have many common hobbies. Trung Thanh (from his first day in the lab,
we have been calling him Mr. LE) is a great friend and colleague. He has helped me
a lot in many different ways, in terms of both work and life. He has also provided me

3

with so many invaluable advice for my research, which is highly appreciated. Zihao and
Min are both my very good friends, like my family in France. I also want to devote my
thankfulness to my other friends, especially: Dr. Marc MONCHI, Mrs. Huiying MONCHI,
Dr. Jingwei ZUO, Dr. Yichang WANG, Assoc. Prof. Yong LIU, Assoc. Prof. Shiyong LI,
Qi ZHAO, Xiaocheng HONG, Qin HU, Peng PAN, Guanhua SHU, Lin GAN, Yi HONG,
and Jun ZHU. I am grateful to have met them.

To the friends I met online who have had some important impact on me: Mingbai,
Tian JI, Stormzhang, Caoz, Fenng, MacTalk, and Mr. Hao CHEN, for their great help
and inspiration in both my life and career.

To Mr. Jay CHOU and Mr. Eason CHAN for their great music and songs, which have
given me a lot of comfort, inspiration, and motivation.

To my parents, Jia GAO and Weiqing OUYANG, for their enormous and unconditional
love and support. During the three-year pandemic, I have not even had a chance to return
to China to reunite with them. I cannot imagine how much they have missed me, as I
have missed them so much. They are always my good listeners, my best friends, and my
biggest supporters, though the distance is long and life is short. “I am so grateful to be
your son. I love you all.”

To the memory of my uncle Haizhou GAO 高海洲 who passed away at age 64 after
a long fight with liver cancer when I was drafting this manuscript, for his love, care,
comfort, support, and all the effort he has made for the whole family through all these
years. May he rest in peace. I will always miss him.

Thank you!

Orléans, 26 May 2023 Z. O.

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 Time Series . 2
1.1.2 Challenges for Time Series Forecasting 2

1.2 General Objectives . 3
1.3 Thesis Description . 4

1.3.1 Thesis Outline . 4
1.3.2 List of Publications . 6

Appendix: Company Introduction . 7
Research Context in the Company . 7
The History of ATTILA . 8
Business Activities . 9

2 Econometric Time Series Forecasting 12
2.1 Time Series Definition and Basics . 12

2.1.1 Autocovariance Function and Stationarity 13
2.1.2 Autocorrelation and Partial Autocorrelation Function 14

2.2 Econometric Time Series Forecasting . 15
2.2.1 AutoRegressive Integrated Moving Average 15
2.2.2 Exponential Smoothing . 23
2.2.3 Multivariate Time Series and Vector AutoRegression 27

2.3 Time Series Decomposition Prior to Forecasting 29
2.3.1 Time Series Components . 29
2.3.2 Two Decomposition Methods of Time Series 30
2.3.3 Theta Method . 40

2.4 Conclusions . 44

3 Deep Learning for Time Series Forecasting 45
3.1 Traditional Deep Learning Models . 46

3.1.1 Econometric and ML Models’ Bottlenecks 46
3.1.2 MLPs, CNNs, RNNs, Attention Mechanism, and Hybrid Models . . 47

3.2 Transformers for Time Series Forecasting 53
3.2.1 Transformer Basic . 53
3.2.2 A gentle survey of Transformers for TSF tasks 56

3.3 Conclusions . 61

CONTENTS

4 STL decomposition prior to econometric and ML models 62
4.1 Introduction . 63
4.2 Methods . 64

4.2.1 Benchmark Methods . 64
4.2.2 Decomposition Methods . 64
4.2.3 Econometric Methods . 65
4.2.4 Machine Learning Methods . 66

4.3 Experiments . 66
4.3.1 Dataset . 66
4.3.2 Pipeline for Machine Learning Methods 67
4.3.3 Pipeline for Econometric Methods 68
4.3.4 Implementation and Parameters Tuning 69
4.3.5 Evaluation Metrics . 69

4.4 Results and Discussions . 70
4.4.1 Results . 70
4.4.2 Discussions . 72

4.5 Conclusions . 73

5 Deep learning with multi-step forecasting strategies 74
5.1 Introduction . 75
5.2 Methods . 75

5.2.1 Multi-step Forecasting Strategies 75
5.2.2 Deep Learning Models . 77

5.3 Experiment . 84
5.3.1 Datasets . 84
5.3.2 Parameter Settings and Evaluation Metric 85

5.4 Results and Discussions . 86
5.5 Conclusions . 90

6 Deep Learning Transformer-based Forecasting 91
6.1 Introduction . 92
6.2 Methods . 93

6.2.1 Rankformer/STLformer Architecture 93
6.2.2 RankCorrelation Block . 95
6.2.3 Multi-Level Decomposition Block 96
6.2.4 STL Decomposition Block . 96

6.3 Experiments . 97
6.3.1 Datasets . 97
6.3.2 Experimental Settings . 98

6.4 Results and Discussions . 99
6.4.1 Results of Rankformer . 99
6.4.2 Results of STLformer . 99
6.4.3 Complexity Analysis and Model Comparison 101

6.5 Conclusion . 101

CONTENTS

7 A Web Application Prototype 103
7.1 Introduction . 103
7.2 The Prototype: A Web Application . 104

7.2.1 User Interface . 104
7.2.2 Technology Stack and Technical Architecture 108
7.2.3 Core Functionalities and Algorithms 110
7.2.4 Deployment and Maintenance . 114

7.3 Conclusion . 114

8 Conclusions and Outlook 116
8.1 Summary of the Thesis . 116
8.2 Challenges, Open Problems, and Future Perspectives 117

8.2.1 Data Requirements . 118
8.2.2 Model Requirements . 119
8.2.3 Task Requirements . 120
8.2.4 Others . 121

Bibliography 123

List of Figures

1.1 Thesis structure. 5
2 Prototype of the robot: ATTILA. 9

2.1 Sunspots data from the National Geographic Data Center. 13
2.2 ACF and PACF of the Sunspots time series. 15
2.3 An example of linear regression on a synthetic dataset. 16
2.4 Coca-Cola quarterly EPS from 1983 Q1 to 2009 Q3. 21
2.5 Monthly totals of international airline passengers from 1949 to 1960. 21
2.6 Apple Inc. quarter revenue by product type. 28
2.7 Apple Inc. (AAPL) daily stock price and its MA-Smoothed lines. 31
2.8 Coca-Cola quarterly EPS and its 2× 4-MA line. 32
2.9 Additive and multiplicative decompositions of Coca-Cola quarterly earnings. 33
2.10 A LOESS example. 36
2.11 The inner loop of STL decomposition. 36
2.12 Comparison of canonical and STL decomposition of the production of elec-

trical equipment in the EU. 37
2.13 Theta lines deflations and dilations of the Series N200 in M3-Competition. 41

3.1 A four-layer MLP. 47
3.2 A 2D convolution operation. 48
3.3 The architecture of a typical CNN. 49
3.4 The fold and unfold architecture of a typical RNN. 50
3.5 The architecture of the attention network. 51
3.6 The architecture of Transformer. 55
3.7 Attention mechanism in Transformer. 56

4.1 Flowchart of the machine learning pipeline. 68
4.2 Flowchart of the econometric methods pipeline. 69
4.3 OWAs for STL decomposition on econometric models. 70
4.4 OWAs for STL decomposition on machine learning models. 72
4.5 Boxplot of OWA gain from STL for each method. 72

5.1 DA-RNN’s Input Attention Mechanism. 78
5.2 DA-RNN’s Temporal Attention Mechanism. 79
5.3 Graphical illustration of LSTNet. 80
5.4 Graphical illustration of TPA-LSTM. 83
5.5 Average RSEs over the horizon for different strategies. 86

LIST OF FIGURES

5.6 Average RSEs for different forecasting horizons. 88
5.7 Average RSEs for different datasets in MIMO strategy. 88
5.8 Average RSEs for different datasets in MIMO, MISMO, and Direct strategy. 89

6.1 The architecture of Rankformer/STLformer. 94

7.1 Home page. 105
7.2 Statistics page. 106
7.3 Result page. 107
7.4 The libraries used in the prototype. 108
7.5 The MVC design pattern. 109
7.6 The data uploading process. 110
7.7 The data preprocessing procedure. 112
7.8 Forecasting procedure. 113
7.9 Saving results procedure. 113
7.10 Docker®. 114

List of Tables

2.1 Special cases of ARIMA models [14]. 20
2.2 Equivalence relationships between some ARIMA and ETS models [14]. . . 27

3.1 Advantages and Disadvantages of DL Methods for TSF. 54

4.1 Forecasting results of different methods on different forecast horizons. . . . 71

5.1 Dataset Description. 85
5.2 Forecasting RSEs for different models on different forecast horizons with

different strategies . 87

6.1 Dataset Description . 98
6.2 Forecasting results for different models on different forecast horizons 100

Acronyms

ACF AutoCorrelation Function
ADMM Alternating Direction Method of Multipliers
AIC Akaike’s Information Criterion
AR AutoRegressive
ARCH AutoRegressive Conditional Heteroskedasticity
ARMA AutoRegressive Moving Average
ARIMA AutoRegressive Integrated Moving Average
BIC Bayesian Information Criterion
BPTT Back-Propagation Through Time
CART Classification And Regression Tree
CNN(s) Convolutional Neural Network(s)
CRM Client Relationship Management
DFM Dynamic Factor Model
DL Deep Learning
DNN(s) Deep Neural Network(s)
EMSSM External Memory Augmented State Space Model
EPS Earnings Per Share
ERP Enterprise Resource Planning
ETS ExponenTial Smoothing
FFT Fast Fourier Transform
FPE Final Prediction Error
GAN Generative Adversarial Network
GARCH Generalized AutoRegressive Conditional Heteroskedasticity
GP Gaussian Process
GRU Gated Recurrent Unit
HQ Hannan-Quinn
HTTP HyperText Transfer Protocol
IC Information Criteria
IID Independent and Identically Distributed
kNN k Nearest Neighbors
LAD Least Absolute Deviation

LSTM Long Short-Term Memory
MA Moving Average
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MAAPE Mean Arctangent Absolute Percentage Error
MSE Mean Squared Error
ML Machine Learning
MLE Maximum Likelihood Estimation
MLP(s) Multiple Layer Perceptron(s)
MTS Multivariate Time Series
MTSF Multivariate Time Series Forecasting
MVC Model-View-Controller
NID Normally and Independent Distributed
OLE Optimized Linear Estimation
OLS Ordinary Least Square
PACF Partial AutoCorrelation Function
RF Random Forest
RNN(s) Recurrent Neural Network(s)
ROI Return On Investment
SARIMA Seasonal AutoRegressive Integrated Moving Average
SC Schwarz Criterion
SSMs State Space Models
SVR Support Vector Machine
TSF Time Series Forecasting
UMBRAE Unscaled Mean Bounded Relative Absolute Error
UTS Univariate Time Series
VAR Vector AutoRegression
VECM Vector Error Correction Model
VSMC Variational Sequential Monte Carlo
WLS Weighted Least Square

Chapter 1

Introduction

Contents
1.1 Background . 1

1.1.1 Time Series . 2

1.1.2 Challenges for Time Series Forecasting 2

1.2 General Objectives . 3

1.3 Thesis Description . 4

1.3.1 Thesis Outline . 4

1.3.2 List of Publications . 6

Appendix: Company Introduction 7

Research Context in the Company . 7

The History of ATTILA . 8

Business Activities . 9

1.1 Background
The contemporary epoch, often called the era of data, has witnessed an unprecedented
proliferation of structured and unstructured data. Every day, quintillions of bytes of
data are generated, spanning various sectors such as finance, healthcare, social media,
and environmental sciences. This surge in data has been paralleled by the evolution of
techniques and methodologies designed to analyze, interpret, and harness this data for
predictive purposes. One of the most prominent and widely used techniques for forecasting
in this data-intensive environment is based on time series (TS) data, i.e., Time Series
Forecasting (TSF).

TS is a series of data points collected over time, such as the stock price, weather, and
traffic volume, to name a few. TSF is a fundamental technique in econometrics, statistical
learning, and data analysis involving finding historical patterns in TS data to extrapo-
late them into the future. These patterns may encompass a variety of characteristics,
such as trends, seasonality, and cyclic behavior, which form the crux of time series data.
Understanding and accurately modeling these components is crucial for effective TSF.

1

1.1. BACKGROUND

Given its capacity to extrapolate historical data trends and predict future occurrences,
TSF techniques have been extensively adopted across various disciplines. For instance,
TSF techniques are employed in the financial sector to forecast stock prices, exchange
rates, and market trends, empowering investors and policy-makers with actionable in-
sights for informed decision-making [1]–[3]. In public health, these methods are used to
predict future disease incidence or patient admissions, facilitating efficient resource plan-
ning and timely interventions. We have seen many applications during these years of the
COVID-19 pandemic [4]–[6]. In environmental science, TSF aids in predicting weather
patterns, climatic changes, and environmental degradation, providing crucial input for
policy formulation and planning [7]. Moreover, in supply chain and operations, TSF
techniques are also pivotal in demand forecasting, inventory management, and capacity
planning [8]–[11].

1.1.1 Time Series

A time series is a sequence of data points that are recorded over time, typically at regular
intervals. These observations can be discrete or continuous, depending on the nature of
the data. For instance, the daily temperature of a city is a continuous time series, while
the number of daily visitors to a website is a discrete time series.

In a time series, each observation is time-dependent, meaning its value is influenced
by the time at which it was recorded and by the values of its previous observations.
This temporal relationship can be further complicated by the presence of trends, which
represent a long-term increase or decrease in the values over time. These trends can be
linear or nonlinear and are typically driven by a range of factors, including population
growth, technological changes, or economic cycles.

Additionally, a time series may exhibit seasonality, characterized by a periodic pattern
that repeats over a specific interval. These seasonal patterns could be daily, weekly,
monthly, or yearly and are often influenced by natural or social phenomena, such as
weather patterns, holidays, or business cycles.

The concept of autocorrelation is also crucial in time series analysis, indicating that
the value of an observation at a particular time might be related to the value of a previ-
ous observation. Autocorrelation can result from a myriad of factors, including memory
effects, feedback loops, or self-reinforcing dynamics.

It is also essential to note that in many real-world contexts, time series data can
be multivariate, i.e., Multivariate Time Series (MTS), meaning it consists of multiple
variables that may interact and exhibit interdependencies. Thus, the analysis of such data
requires techniques that can effectively capture and model these intricate relationships.

Analyzing TS involves using statistical and mathematical models to analyze and fore-
cast TS data. These models may consider various characteristics of TS data, which can
be used to make predictions of the series’ future values.

1.1.2 Challenges for Time Series Forecasting

While TSF has a broad array of applications across diverse disciplines and has significantly
evolved, it is a field that grapples with numerous challenges. These challenges, which
encompass both technical and conceptual difficulties, have profound implications for the

2

1.2. GENERAL OBJECTIVES

accuracy, efficiency, and practical applicability of forecasting models.
One fundamental technical challenge in TSF pertains to handling missing or irregular

data. Data collection processes are often imperfect in the real world due to equipment
failure, human error, or external circumstances. Consequently, time series data may be
plagued with missing values, irregular intervals, or errors, which can significantly under-
mine the performance of forecasting models. Current methods for handling these issues,
such as imputation or interpolation, often involve assumptions that may not hold in many
cases and can thus introduce additional bias or error into the forecasts.

Another major technical issue is the challenge of non-stationarity. Traditional TSF
models assume stationarity, i.e., a constant mean and variance over time. However, many
real-world time series data exhibit non-stationarity, with patterns that change over time
due to various factors. The presence of trends, seasonality, or sudden changes in the un-
derlying process can violate the assumption of stationarity, leading to poor model perfor-
mance. While there are methods to transform non-stationary data into stationary forms,
these transformations can sometimes oversimplify or distort the underlying dynamics of
the data, thereby reducing the accuracy of the forecasts.

A more complex problem in TSF is the management of multivariate time series. In
reality, many systems involve multiple interrelated time series, and the ability to forecast
these series jointly can provide more accurate and holistic insights. However, multivariate
TSF is a highly complex task, as it requires modeling not only the temporal dynamics of
each series but also the interdependencies between them. Traditional univariate forecast-
ing models are ill-suited to this task, and while there are multivariate models available,
they often involve high computational complexity and can be difficult to interpret.

In addition to these technical issues, TSF also faces the challenge of achieving reliable
long-term predictions. While short-term forecasts can often be made with reasonable
accuracy, the uncertainty tends to increase with the forecast horizon. This is due to
various factors, including the potential for unforeseen events or changes, the accumulation
of prediction errors over time, and the limitations of the models themselves. The difficulty
of long-term forecasting is a significant impediment in many applications where strategic
decisions and planning require reliable forecasts over extended horizons.

The advent of Big Data has added a new dimension to these challenges. With the
increasing volume, velocity, and variety of data, traditional econometric methods often
struggle with scalability and complexity. The high dimensionality and heterogeneity of Big
Data pose additional challenges for TSF, including computational efficiency, overfitting,
and the curse of dimensionality. Furthermore, Big Data often involves noisy, unstruc-
tured, or semi-structured data, which require more advanced preprocessing and feature
extraction techniques.

1.2 General Objectives
As described in the previous section, TSF demands a wide range of amelioration. In this
thesis, we contribute to TSF in the following three aspects.

• Time series decomposition. Time series decomposition is an invaluable tool
in forecasting and data analysis, facilitating the isolation of specific components
such as trends, seasonality, and random noise within a series. This technique is

3

1.3. THESIS DESCRIPTION

often times used as a preprocessing step to improve the accuracy of forecasting
models. However, choosing and applying appropriate decomposition techniques for
different scenarios and forecasting models remain problematic. The improvement
in forecasting accuracy is also not guaranteed, and in some cases, decomposition
can even harm the performance of forecasting models. We want to investigate the
impact of decomposition on different forecasting models and provide insights into
the best practices for applying decomposition techniques.

• Multi-step forecasting. In reality, generating reliable and accurate multi-step
forecasts poses significant challenges. Traditional methods often suffer from error
accumulation, where inaccuracies in early forecasts compound in later ones. Fur-
thermore, the issue of maintaining model performance in the face of non-stationary
and high-dimensional data exacerbates the difficulty of multi-step forecasting. In
this thesis, we will explore and address these problems, aiming to improve the accu-
racy and reliability of multi-step forecasts, particularly with deep learning models.

• Integrations of econometric methods. In addition to these technical issues,
another area warrants attention: integrating machine learning (ML) and deep learn-
ing (DL) techniques with traditional econometric methods. ML and DL methods
have shown great promise in handling high-dimensional and complex data and have
achieved remarkable successes in many areas of data science. However, their ap-
plication in TSF is still a relatively new and rapidly evolving field, and there are
many unresolved issues and potential areas for improvement. For instance, how can
we best incorporate econometric knowledge into ML models? How can we design
deep architectures to detect correlation? Is it possible to integrate decomposition
techniques with deep models so we can improve their performance? These questions
are crucial for the development of effective and practical forecasting models. We try
to answer them by proposing new models and methodologies in this thesis.

In conclusion, while TSF has made significant strides and has a wide range of applica-
tions, many challenges and open questions still need to be addressed. Solving these issues
requires not only technical innovations but also a deep understanding of the underlying
principles and assumptions of TSF models. Careful consideration of different applications’
practical needs and constraints is also vital. Hopefully, this thesis will contribute to this
ongoing effort by providing new insights and methodologies for TSF.

1.3 Thesis Description

1.3.1 Thesis Outline

The rest of this thesis is organized into the following eight chapters. See Fig. 1.1 for an
overview.

The first two chapters are dedicated to state of the art for econometric TSF methods
and DL models for TFS, respectively.

• Chapter 2 introduces the mathematical concepts and background behind econo-
metric methods for TSF. It covers the basics of time series analysis and discusses

4

1.3. THESIS DESCRIPTION

Th
es

is
St

ru
ct

ur
e

Introduction

Conclusions and
Outlook

State Of The Art

Econometric Methods

Deep Learning Models

Contributions

STL Decomposition prior
to forecasting

DL with Multi-step
Forecasting Strategies

DL Transformer-based
Forecasting

Web APP Prototype

Figure 1.1: Thesis structure.

the main econometric methods for TSF, including AutoRegressing Integrated Mov-
ing Average (ARIMA), ExponenTial Smoothing (ETS), and Vector AutoRegress-
ing (VAR) model. This chapter also presents time series decompositions prior to
forecasting as well as the decomposition-based Theta method and its generaliza-
tions/variants.

• Chapter 3 introduces the state of the art of traditional DL models for TSF. We
discuss the bottleneck of econometric and ML models and present the main DL
models for TSF and their main challenges. We also discuss several hybrid models
combining econometric and DL models. The later part of this chapter revisits
the Transformer model and provides a comprehensive overview of the Transformer
model and its variants for the TSF problem, including 14 different Transformer-
based models. We discuss their improvements over the vanilla Transformer as well
as their precursors.

Our main contributions are presented in the following four chapters.

• Chapter 4 investigates the effect of putting STL decomposition as a preprocessing
step for econometric and ML models. We compare three econometric and five ML
methods. Extensive experiments are conducted on the M3-Competition datasets.
The results show that when applied to the monthly industrial M3-Competition
dataset as a preprocessing step, STL decomposition can benefit forecasting using
econometric methods but harms ML ones. We also discuss the reasons behind these
results.

• Chapter 5 analyzes three DL models for the multivariate TSF problem under five
forecasting strategies for multi-step forecasting. We compare the performance of

5

1.3. THESIS DESCRIPTION

these models under different strategies on various datasets. Our results reveal that
these models constantly suffer from accumulated errors under the Recursive strategy
and thus cannot carry out actual multi-step forecasting tasks. However, carefully
combining them with the MIMO/MISMO strategy can tackle this problem and thus
enables one-step-ahead deep learning models for multi-step forecasting. Further-
more, we discuss the effect on models’ capacity to capture temporal patterns when
combined with different forecasting strategies facing different series seasonalities.

• Chapter 6 proposes a novel Transformer-based model, namely Rankformer, lever-
aging the rank correlation function and decomposition architecture for long-term
TSF tasks. We also present STLformer, an updated version of Rankformer that uti-
lizes the STL decomposition architecture to improve forecasting performance. The
combination of econometric methods and the advanced DL models enables Rank-
former and STLformer to outperform four state-of-the-art Transformers and two
RNN models across multiple datasets and forecasting horizons.

• Chapter 7 outlines a web application prototype’s design, implementation, and de-
ployment. It starts with the functional requirements, then details the design as-
pects, including user interface, technology stack, architecture, core functionalities,
and embedded forecasting algorithms. Python, Flask, Bootstrap, and Plotly were
used for development, following an MVC design pattern for easy maintenance and
extension. The application is dockerized for seamless execution on any compatible
machine. The chapter concludes by discussing the application’s deployment and
maintenance processes.

Chapter 8 concludes the thesis with our main results and provides an outlook on
future work. Particularly, we present this thesis’s main contributions to econometric and
DL domains, respectively, and discuss our work’s limitations. We also present several
research challenges and open problems that can be considered for future TSF problems
research. They are data, model, and task requirements. Some possible solutions are also
discussed.

1.3.2 List of Publications

Most of the above results have been published/submitted in the following papers:

[1] Z. Ouyang, P. Ravier, and M. Jabloun, “STL Decomposition of Time Series Can
Benefit Forecasting Done by Statistical Methods but Not by Machine Learning
Ones,” Eng. Proc., vol. 5, no. 1, p. 42, 2021.

[2] Z. Ouyang, P. Ravier, and M. Jabloun, “Are Deep Learning Models Practically
Good as Promised? A Strategic Comparison of Deep Learning Models for Time
Series Forecasting,” in Proc. EUSIPCO, 2022.

[3] Z. Ouyang, P. Ravier, and M. Jabloun, “Une comparaison des modèles d’apprenti-
ssage profond combinés avec des différentes stratégies pour la prédiction multi-
étape des séries temporelles,” in Proc. GRETSI, 2022.

6

APPENDIX: COMPANY INTRODUCTION

[4] G. Ouyang, K. Abed-Meraim, and Z. Ouyang, “Magnetic-Field-Based Indoor Po-
sitioning Using Temporal Convolutional Networks,” Sensors, vol. 23, no. 3, p. 1514,
2023.

[5] Z. Ouyang, M. Jabloun, and P. Ravier, “Rankformer: Leveraging Rank Correla-
tion for Transformer-based Time Series Forecasting,” in Proc. IEEE SSP, 2023.

[6] Z. Ouyang, M. Jabloun, and P. Ravier, “STLformer: Exploit STL decomposition
and Rank Correlation for Time Series Forecasting,” in Proc. EUSIPCO, 2023.

Appendix: Company Introduction
This thesis is funded by ATTILA Gestion, under the CIFRE1 convention N◦2019/0551
contracted with the French National Association for Research and Technology (ANRT).
This section provides a brief introduction to the company.

Research Context in the Company

ATTILA is a well-established franchise network in the French roofing market, specializing
in repairing, maintaining, and preserving all types of roofs. With over 100 agencies and 750
collaborators throughout France, the company has grown rapidly over the years, catering
to an expanding customer base and fulfilling various requests. As the company continues
to expand, ATTILA recognizes the need to provide better support to its collaborators
and customers. In order to address this need, ATTILA is looking to develop an assistance
system that can:

1. Predict the future performance of each agency;

2. Detect and notify potential problems;

3. Provide tailored advice on best practices and methodologies.

By leveraging advanced technologies and data-driven insights, ATTILA aims to en-
hance its overall efficiency and quality of service, ensuring continued success and growth
in the competitive roofing market.

Therefore, ATTILA proposed this CIFRE thesis to address these challenges. The aim
of the thesis is to analyze the evolution of the agencies’ data and predict their perfor-
mances. Thus, the thesis will compare classical time series analysis methods and machine
learning techniques. Additionally, the thesis will focus on developing algorithms to be in-
tegrated into the assistance system that can detect and notify the occurrence of problems
and provide appropriate advice to help improve the methodologies used by ATTILA’s
collaborators. Overall, this program will help ATTILA better support its collaborators
and improve its services to its customers.

This CIFRE thesis aims to develop a model that can predict the performance of
ATTILA agencies in terms of sales and profitability. The model will be used to help the
company make better decisions regarding the expansion of its network. The model will

1Conventions Industrielles de Formation par la REcherche

7

APPENDIX: COMPANY INTRODUCTION

be based on the data collected by the company, which will be used to train a machine-
learning (ML) algorithm. The model will be used to predict an agency’s performance,
allowing the company to manage its resources better and provide better service to its
clients.

The company’s data are collected from our internal system ATLAS, where each agency
can report its indicators, such as Client Relationship Management (CRM), Enterprise
Resource Planning (ERP), and accounting systems, to name a few. The data are then
processed and stored in a data warehouse maintained by MB CLOUD, which we will use
to train the ML algorithm. The data are also used to generate reports and dashboards
that are used by the company’s management to make decisions.

In this thesis, data are treated in the form of time series, as the data are collected on a
daily/monthly basis. We will focus on TSF techniques and applying the developed models
to the company’s data. By comparing the forecasted values with the actual values, we will
be able to evaluate the agency’s performance and help the local manager/management
department determine what to do for the agency’s needs.

The History of ATTILA

In 2001, while working as a construction manager for a roofing company, Mr. Benoît
LAHAYE had several reflections regarding the roofing industry, which led to the founding
of ATTILA. These reflections were:

• Construction companies tend to prioritize big repairs and neglect small and medium-
sized roof repairs;

• Roof maintenance is often overlooked;

• Roofs are not well-formed in terms of industrial sealing or safety;

• Roofing companies lack proper structuring.

In 2002, Mr. LAHAYE collaborated with two robotics technicians to design a prototype
roof-cleaning robot, which they named ATTILA. See Fig. 2. They tested the robot’s
capabilities on a church roof, and the test was a resounding success.

Mr. LAHAYE’s realization and prototype success paved the way for his innovative
concept of a specialized sign solely focused on roof maintenance and repair, emphasizing
the preservation of “Capital-toit”. In 2003, he founded his own company, called ATTILA
System2, paying tribute to his robot prototype. In 2006, Mr. LAHAYE won the gold
medal in the Lépine contest for his roof cleaning system.34 As demand grew, he decided
to expand his business into franchise mode that same year.

Nowadays, ATTILA has established itself as a prominent national network that spe-
cializes in the repair and maintenance of diverse types of roofs and has expanded its
operations with over 100 branches located across France. The company has established a
new profession with its unique market offering, providing expertise to both professionals

2The company was later renamed to ATTILA on January 1st, 2018.
3https://www.concours-lepine.com/wp-content/uploads/2012/04/attila124.pdf
4https://www.concours-lepine.com/palmares/2006-2/concours-lepine-regional-strasbour

g-2006/

8

https://www.concours-lepine.com/wp-content/uploads/2012/04/attila124.pdf
https://www.concours-lepine.com/palmares/2006-2/concours-lepine-regional-strasbourg-2006/
https://www.concours-lepine.com/palmares/2006-2/concours-lepine-regional-strasbourg-2006/

APPENDIX: COMPANY INTRODUCTION

Figure 2: Prototype of the robot: ATTILA.

and private individuals to protect their roofs as a valuable asset. Thanks to its experience
and the expertise of its employees, ATTILA achieved a turnover of 83 million euros in
2021. As of 2022, the network has more than 750 employees and over 100 agencies across
the country, with plans to expand to 200 agencies by 2025. The company’s growth has
resulted in approximately ten new agencies opening each year.

Business Activities

Missions

ATTILA provides comprehensive, innovative, and personalized solutions for repairing,
renovating, and maintaining roofs of all types, including tiles, slates, chimneys, gutters,
downspouts, skylights, cladding, and asbestos zones. ATTILA serves a diverse range of
clients, including industry professionals, property managers, private and public organiza-
tions, and homeowners with new or old roofs, whether they are tenants or owners of their
premises.

ATTILA is committed to preserving the roof from the end of its construction to the
day before its refurbishment. Regular maintenance and minor repairs are essential to
prolonging the lifespan of the roof, and ATTILA’s services are designed to achieve just
that. On average, maintaining a roof for 20 years costs five times less than completely
refurbishing it. ATTILA has created a new profession that ensures the sustainability of
roofs in an ecological context.

At ATTILA, four types of services are provided to clients, regardless of their type of
roof:

• The first service involves conducting a diagnostic assessment of the roof and its
surroundings, which includes identifying and addressing leaks and performing a
comprehensive audit of the roof and its associated elements.

• The second service pertains to repairing and maintaining roofs, whether industrial,
terrace, or traditional. ATTILA performs the necessary repairs to make the roof
safer and more durable and takes measures to prevent external elements from af-
fecting the roof.

9

APPENDIX: COMPANY INTRODUCTION

• The third service focuses on improving the additional elements of roofs, such as
those that provide natural light, manage rainwater and prevent pest infestation.
ATTILA installs and maintains these elements to prolong the roof’s life.

• Finally, the fourth and last service involves emergency management. When a delay
in intervention can cause additional damage or endanger lives, ATTILA provides
rapid water removal to limit water damage, temporary waterproofing, or prevention
of the fall of roof elements.

All of these services have a common goal: to effectively protect the clients’ “Capital-
toit” while adhering to safety regulations.

Company Structure

ATTILA has several departments that collaborate to ensure the efficient operation of
the franchise network. The company’s headquarters is located in the city of Montargis,
France, and the main activities of ATTILA are divided into the following departments:

1. ATTILA has a Management Department called ATTILA Gestion whose objective is
to drive all services and make strategic and operational decisions. This department
ensures the proper functioning of the franchise network, aiming to meet the needs
of clients and employees.

2. The Marketing Department sets up various communication tools to take care of
the ATTILA brand. They work on branding elements such as building and vehicle
dressing, signage on construction sites, brochures, flyers, business cards, and stands.
Additionally, the department manages internal communication through a weekly
newsletter and a quarterly journal.

3. ATTILA also has a Purchasing Department whose responsibility is to control the
quality/price ratio offered to customers by all agencies. The department provides
technical and commercial support to ensure that the products provided by the agen-
cies meet quality standards. This department also communicates with the suppliers
to address any concerns the agencies may have about the products.

4. ATTILA has an IT Department called MB CLOUD, which manages the company’s
IT tools, including the computer network, databases, websites, and intranet. This
department ensures that all IT tools are optimally and well-maintained to guarantee
the company’s proper functioning.

5. A Training Department helps every network member learn best practices, regardless
of their position. Indeed, the training center offers numerous safety, technique, man-
agement, office automation, and professional skills courses. The training department
calls on many internal or external speakers to carry out its missions successfully.
Finally, this department also serves as a point of contact between members of the
different franchises. These courses allow employees from each franchise to meet peo-
ple from different cities in France who also work at ATTILA, with whom they can
exchange their experiences and thus create bonds.

10

APPENDIX: COMPANY INTRODUCTION

6. In order to fulfill its role as a building company, ATTILA has a Technical Depart-
ment. The objective of this department is to provide support for building sites and
to keep an eye on the managers’ tools, such as correcting estimates, providing safety
information, and technical assistance. Moreover, this department creates technical
training programs for the employees, creating a solid link with the Training depart-
ment.

7. Once the employees have received training, the Animation Department takes over.
This department acts as the intermediary between the head-end and the network.
The animators verify that ATTILA’s proprietary techniques are being implemented
correctly by the network members. They then identify and promote good practices
proposed and experienced by the collaborators directly in the field.

8. In order to efficiently manage multi-site clients, ATTILA has established the Grand-
sComptes Department. Its purpose is to centralize the administrative, commercial,
and technical needs and requests of multi-site clients such as Conforama, E. Leclerc,
and Point.P.

9. ATTILA also relies on its Wealth Management Department for everything related
to its premises. Indeed, the objective of this department is to technically, finan-
cially, and regulatory manage the buildings used by ATTILA Gestion. It also has
a mission to ensure legal monitoring of premises regulation and workplace safety.
The Wealth Management department is available for network members to answer
questions regarding their premises and arrangement.

10. ATTILA has an Administrative and Financial Department responsible for register-
ing all the invoices and managing the company’s social side (such as pay slips with
an external accounting firm). This department also organizes tracking charts and
monitors budget management for the headquarter. Additionally, the department
manages the general accounting for the headquarter.

11. In order to experiment, test, and prove the efficiency of the ATTILA franchise model,
a Pilot Unit has been established. This service aims to manage integrated agencies
and verify that the orders given by the Service Direction have a positive effect
before expanding the model modifications to the entire network. Currently, the
pilot unit has four internal agencies: Orange, Montargis, Orléans, and Villefranche.
This department aims to identify and address potential issues before they affect the
whole network, thus ensuring the success of the franchise model.

12. ATTILA also has a Franchisee Commission whose mission is to collect feedback
from agencies, propose modifications, which will be implemented after feasibility
verification by the relevant department and validation from the franchisor via a
voting system, and organize brainstorming meetings if necessary. The commission
links franchisees and franchisors, ensuring their voices are heard and considered
when making decisions.

In conclusion, ATTILA is a franchise network, and each franchisee operates inde-
pendently while the headquarter provides support and guidance to ensure the proper
functioning of the network. As such, each agency has its organizational structure, which
will not be described here.

11

Chapter 2

Econometric Time Series Forecasting

Contents
2.1 Time Series Definition and Basics 12

2.1.1 Autocovariance Function and Stationarity 13

2.1.2 Autocorrelation and Partial Autocorrelation Function 14

2.2 Econometric Time Series Forecasting 15

2.2.1 AutoRegressive Integrated Moving Average 15

2.2.2 Exponential Smoothing . 23

2.2.3 Multivariate Time Series and Vector AutoRegression 27

2.3 Time Series Decomposition Prior to Forecasting 29

2.3.1 Time Series Components . 29

2.3.2 Two Decomposition Methods of Time Series 30

2.3.3 Theta Method . 40

2.4 Conclusions . 44

This chapter presents a detailed overview of the state-of-the-art econometric methods for
time series analysis and forecasting. It is organized as follows: Sec. 2.1 introduces the
basic definitions and notations of time series, including the autocovariance function, sta-
tionarity, the AutoCorrelation Function (ACF), and the Partial AutoCorrelation Function
(PACF). In Sec. 2.2, we present in detail the AutoRegressive Integrated Moving Average
(ARIMA), ExponenTial Smoothing (ETS), and Vector AutoRegressive (VAR) families for
TSF. Sec. 2.3 presents time series components and two decomposition techniques prior to
forecasting. The Theta method based on the concept of decomposition is also explained.
We conclude this chapter in Sec. 2.4.

2.1 Time Series Definition and Basics
In this section, some basics of time series are given as preliminary knowledge. We will
discuss time series’ basic representation, stationarity, and the autocorrelation function.

A time series is a sequence that consists of the historical measurements yt of an ob-
servable variable y at typically equal time intervals. Usually, the observations come from

12

2.1. TIME SERIES DEFINITION AND BASICS

many different fields as disparate as economy, social sciences, energy, environment, cli-
mate, biology, and engineering.

Time series that contains records for only one single variable is called univariate series.
In contrast, a time series that includes more than one variable is multivariate. Time series
can be either continuous or discrete. Intuitively, the temperature or the flow of a river can
be recorded as a continuous-time series, while the number of customers of a company or
the population of a city may be counted as a discrete-time series. Usually, a discrete-time
series is recorded consecutively at equal time-space, like hourly, daily, monthly, or yearly.

Fig. 2.1 gives an example of a univariate time series with the Sunspots data collected
by the National Geographic Data Center.1

1700 1750 1800 1850 1900 1950 2000
Year

0

25

50

75

100

125

150

175

S

un
sp

ot
s

Figure 2.1: Sunspots data from the National Geographic Data Center.

Time series is often represented as a set of observations indexed by typically equal
time order:

(y1, y2, · · · , yT).

Normally, we can have previous and more recent data. Thus this observation sample
can be seen as a finite fragment from an infinitely long sequence {yt}∞t=−∞:

{yt}∞t=−∞ = (· · · , y−1, y0, y1, y2, · · · , yT , yT+1, yT+2, · · ·).

2.1.1 Autocovariance Function and Stationarity

The covariance between two random variables in time series {yt} is called the autoco-
variance, noted as Cov(ys, yt) = E[(ys − µ)(yt − µ)] where µ is the mean of {yt}. If
Cov(ys, yt) = γ|t−s| depends only on |t− s|, we call:

γk = Cov(yt−k, yt), k = 0, 1, 2, ...

1Dataset provided by statsmodels: https://www.statsmodels.org/stable/datasets/generate
d/sunspots.html.

13

https://www.statsmodels.org/stable/datasets/generated/sunspots.html
https://www.statsmodels.org/stable/datasets/generated/sunspots.html

2.1. TIME SERIES DEFINITION AND BASICS

the autocovariance function of the time series {yt}. It is easy to see Cov(ys, yt) =
Cov(yt, ys), so γk = γ−k. γ0 = Var(yt). Based on the Cauchy-Schwartz inequality, we
have:

|γk| = |E[(yt−k − µ)(yt − µ)]| ≤ [E(yt−k − µ)2E(yt − µ)2]1/2 = γ0

where µ = E(yt) and γ0 = E[(yt − µ)2] = Var(yt).
One crucial property of a time series is its stationarity. A time series is stationary if

its econometric properties are invariant with the time at which it is observed. Precisely,
the self-covariance stationary or weak stationary is a more practical condition. We call a
time series {yt} weak stationary if it has a limited second-order moment and satisfies:

1. E(yt) = µ, µ is independent with t.

2. Var(yt) = γ0, γ0 is independent with t.

3. γk = Cov(yt−k, yt), k = 1, 2, ..., γk is independent with t.

2.1.2 Autocorrelation and Partial Autocorrelation Function

Autocorrelation Function

We define the correlation coefficient between two random variables X and Y as:

ρ(X, Y) = ρx,y =
Cov(X, Y)√

Var(X)Var(Y)
=

E[(X − µx)(Y − µy)]√
E(X − µx)2E(Y − µy)2

.

Then the autocorrelation coefficients can be defined as:

ρ(yt−k, yt) =
Cov(yt−k, yt)√

Var(yt−k)Var(yt)
=

γk√
γ0γ0

=
γk
γ0

, k = 0, 1, 2, ...,∀t.

Denote ρk = γk/γ0. It is the correlation coefficient between yt−k and yt and irrelevant
with t. We call ρk the AutoCorrelation Function (ACF) of yt, with ρ0 = 1.

Partial Autocorrelation Function

Let X1, ..., Xn, Y , and Z be random variables. Consider the estimation problem:

L(Y |X1, . . . , Xn)
△
= argmin

Ŷ=a0+a1X1+···+anXn

E(Y − Ŷ)2. (2.1)

Equation (2.1) is Y ’s Optimized Linear Estimations (OLE) on X1, ..., Xn. E(Y −Ŷ)2 =
∥Y − Ŷ ∥2 is the mean square error of the estimation. The correlation coefficient between
Y −L(Y |X1, . . . , Xn) and Z−L(Z|X1, . . . , Xn) is called the partial correlation coefficient
between Y and Z deducting the linear impact of X1, ..., Xn.

Given a stationary time series {yt}, we have:

L(yt|yt−1, . . . , yt−n) = ϕn0 + ϕn1yt−1 + · · ·+ ϕnnyt−n, n = 1, 2, ...

where ϕnj, j = 0, 1, ..., n is irrelevant with t. We call ϕnn the partial autocorrelation
coefficients of the time series {yt}. Series {ϕnn} is defined as the Partial AutoCorrelation
Function (PACF) of {yt}. If a limited number, e.g. T , of samples are used to estimate
ϕnn, we have the estimated sample PACF ϕ̂nn, n = 1, 2, ..., T .

Both ACF and PACF are valuable tools for analyzing time series. The upper half of
Fig. 2.2 shows the ACF of the Sunspots time series, and the lower half displays its PACF.

14

2.2. ECONOMETRIC TIME SERIES FORECASTING

0.5

0.0

0.5

1.0
A

C
F

ACF value
95% Confidence Interval

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
lags

0.5

0.0

0.5

1.0

PA
C

F

PACF value
95% Confidence Interval

Figure 2.2: ACF and PACF of the Sunspots time series.

2.2 Econometric Time Series Forecasting

2.2.1 AutoRegressive Integrated Moving Average

This subsection discusses the AutoRegressive Integrated Moving Average (ARIMA) fam-
ily. The author starts with the multivariate linear regression defined as follows.

Given a dataset D = {(x1, y1), (x2, y2), ..., (xm, ym)}, with xi = (xi1;xi2; ...;xid), yi ∈
R, a linear regression tries to learn:

f(xi) = w⊤xi + b (2.2)

to make f(xi) ≃ yi. The parameters w and b can be estimated by the Ordinary
Least Square (OLS) method. Fig. 2.3 gives an example of linear regression on a synthetic
dataset.

AutoRegression

In multivariate linear regression, we search the relationships among the independent vari-
ables xi and the dependent variable yi. We can unfold its matrix format in (2.2) into the
following representation:

y = w1x1 + w2x2 + · · ·+ wNxN + b.

We now substitute the independent variables in the multivariate linear regression
model with the past values of yt:

yt = ϕ0 + ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + εt. (2.3)

In many applications, a time series can be represented by the sum of historical mea-
surements and a noise term, as shown in (2.3). AutoRegression (AR) is a model that uses
this form to describe the time series.

15

2.2. ECONOMETRIC TIME SERIES FORECASTING

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

20

10

0

10

20

30
y

Figure 2.3: An example of linear regression on a synthetic dataset.

The simplest AR model is AR(1):

yt = ϕ0 + ϕ1yt−1 + εt, (2.4)

where εt ∼ NID(0, σ2), ϕs are model parameters and |ϕ1| < 1.
A generalization of AR(1) is the AR(p) model, which has the exact same representation

as (2.3), with a stationary condition that ϕs satisfies that all complex roots z∗ of the
following equation fulfill |z∗| > 1:

1− ϕ1z − · · · − ϕpz
p = 0. (2.5)

Equation (2.5) is called the characteristic equation of (2.3). The characteristic equa-
tion’s complex roots (eigenvectors) must be outside the unit circle.

Often the differencing operator is called Backshift Operator and noted Byt = yt−1. So
an AR(p) in (2.3) can be represented as:

Φ(B)yt = ϕ0 + εt, (2.6)

where ϕs are represented as Φ(B) = 1−
∑p

i=1 ϕiBi.

Order Determination of AR Model In the real-world application of the AR(p)
model, order p is unknown. Two methods are commonly used to determine the proper
order: 1) The cut-off of PACF; 2) The minimization of the Information Criterion.

1. The cut-off of PACF. If {yt} obeys the following AR(p) model:

yt = ϕ0 + ϕ1yt−1 + · · ·+ ϕpyt−p + εt, ϕp ̸= 0,

it means when using the linear combination of yt−1, yt−2, ... to estimate yt, only yt−1, ..., yt−p

are required. Adding yt−p−1, yt−p−2, ... will not improve the estimation, which means for
k > p, ϕkk = 0. This phenomenon is called the cut-off of an AR(p) model’s PACF.

The PACF calculated on T samples ϕ̂kk has the following properties:

16

2.2. ECONOMETRIC TIME SERIES FORECASTING

• When T →∞, ϕ̂pp → ϕp ̸= 0.

• For k > p, ϕ̂kk → 0 (T →∞).

• For k > p, the asymptotic variance is 1
T
.

By putting the upper and lower bound of ± 2√
T

on the PACF plot, we can exploit
it to locate the cut-off position to determine the proper AR order. The lower half of
Fig. 2.2 shows the PACF of the sunspots time series. A cut-off can be found at the second
position. So choosing an AR(2) model for modeling the sunspots data is favorable.

2. The minimization of the Information Criterion. Information Criteria (IC)
are commonly used tools for model comparison. The basic idea behind the information
criterion is a compromise between the fitting quality and the model complexity.

Akaike’s Information Criterion (AIC) [12] is a frequently used IC. The AIC of an
AR(p) model with IID white noise εt ∼ NID(0, σ2) is defined as follows:

AIC = ln σ̃2
k +

2k

T
, (2.7)

k is the order, T is the sample size, and σ̃2
k is the Maximum Likelihood Estimation (MLE)

of εt’s variance under this order. The first term ln σ̃2
k represents the fitting accuracy. A

higher value dictates a worse fitting. The second term 2k
T

is a regularization of the model
complexity. A higher value indicates a more complex, thus less stable model with a worse
generalization ability for future values. Minimizing the AIC(k) by choosing k in a certain
range compromises the fitting quality and the model complexity.

Another commonly used IC is the Bayesian Information Criterion (BIC) [13]:

BIC = ln σ̃2
k +

k lnT

T
. (2.8)

BIC tends to choose a lower order than AIC.

Moving Average

Consider a special AR(∞) model:

yt = ϕ0 −
∞∑
j=1

(−θ1)jyt−j + εt, (2.9)

where 0 < |θ1| < 1. Reform (2.9) as:

yt +
∞∑
j=1

(−θ1)jyt−j = ϕ0 + εt. (2.10)

Replace it with t− 1 and multiply −θ1 at both sides:

−θ1yt−1 + (−θ1)
∞∑
j=1

(−θ1)jyt−1−j = −ϕ0θ1 − θ1εt−1.

17

2.2. ECONOMETRIC TIME SERIES FORECASTING

We then have:
∞∑
j=1

(−θ1)jyt−j = −ϕ0θ1 − θ1εt. (2.11)

Put (2.11) into (2.10), we have:

yt = ϕ0(1 + θ1) + εt + θ1εt−1.

We call a model with such form a 1-order Moving Average (MA) or MA(1) model.
It can be easily derived that an MA model uses the moving average value over white

noise to model a time series. MA(1) is the simplest MA model:

yt = θ0 + εt + θ1εt−1, (2.12)

where εt ∼ NID(0, σ2), and |θ1| < 1. It is easy to find that {yt} is a stationary time series.
The general MA(q) model has the following form:

yt = θ0 + εt + θ1εt−1 + · · ·+ θqεt−q. (2.13)

Equation (2.13) has a characteristic equation:

1 + θ1z + · · ·+ θqz
q = 0.

If all the eigenvalues are outside the unit circle, the MA model is invertible, which will
be discussed later in this subsection.

An MA(q) model in (2.13) can also be represented in the form of the backshift operator
B:

yt = θ0 +Θ(B)εt, (2.14)

where θs are represented as Θ(B) = 1−
∑q

j=1 θjBj.

Properties of MA Models Consider the MA(1) model in (2.12). It is easy to derive
its expectation, variance, and autocovariance function:

E(yt) = θ0,∀t, Var(yt) = σ2(1 + θ21),

Cov(yt−k, yt) = E[(yt−k − θ0)(yt − θ0)] =

σ2(1 + θ21), k = 0,

σ2θ1, k = 1,

0, k > 1.

Then its ACF should be:

ρk =

1, k = 0,
θ1

1+θ21
, k = 1,

0, k > 1.

(2.15)

Equation (2.15) verifies that an MA(1) series is weak stationary and presents a cut-off
of the ACF at the first lag. It is easy to prove that for an MA(q) model, its ACF also
represents this cut-off at the k-th lag, i.e., ρk = 0,∀k > q.

18

2.2. ECONOMETRIC TIME SERIES FORECASTING

For an MA(1) model, when |θ1| < 1, based on (2.10), we have:

εt = −ϕ0 + yt +
∞∑
j=1

(−θ1)jyt−j. (2.16)

εt represents the incremental information at time t. We call it innovation.
Equation (2.16) means that the innovation can be represented with a linear combina-

tion of the current observation yt and historical observation yt−j, j = 1, 2, The further
the historical value situates, the less impact it has on the innovation. In other words,
{yt, yt−1, ...} and {εt, εt−1, ...} can linearly represent each other, ∀t ∈ Z. This is called the
invertibility of the MA model.

Order Determination of MA Model Similar to the AR(p) model, there are also two
ways of determining the order of an MA(q) model.

1. The cut-off of the ACF. As discussed in the previous section, the ACF of an
MA(q) model cuts off at the q-th position, which can help us to determine its order.

2. The minimization of the IC. On can also use AIC or BIC to determine q.

AutoRegressing Moving Average

The AutoRegressive Moving Average (ARMA) model combines AR and MA while having
similar goodness of fit with a simpler structure. An ARMA(p, q) model has the following
form:

yt = ϕ0 + ϕ1yt−1 + · · ·+ ϕpyt−p + εt + θ1εt−1 + · · ·+ εt−q. (2.17)

Both the ACF and the PACF of an ARMA model present no cut-off feature. Thus, it
is difficult to determine the orders accordingly, but favorable to use the IC.

AutoRegression Integrated Moving Average

The aforementioned AR, MA, and ARMA models are mainly for stationary time series.
In many cases, time series can dissatisfy the stationary condition. The random walk is a
classic one:

pt = pt−1 + εt,

where εt ∼ NID(0, σ2). A random walk has a very similar formula as the AR(1) in (2.4),
but as Var(pt) = σ2t, it does not satisfy the stationary condition.

Consider another random walk in the following form:

pt = µ+ pt−1 + εt. (2.18)

It is easy to learn that E(pt|p0) = p0 + µt and Var(pt) = σ2t. This means the model
has a trend of y = p0 + µt. Thus it is called the random walk with a drift.

If we substitute εt in (2.18) with a stationary ARMA(p, q) series {xt} with E(xt) = 0
and Var(xt) = σ2

x, we get:
yt = yt−1 + µ+ xt. (2.19)

Since E(yt|y0) = y0 + µt,Var(yt) = σ2
xt, {yt} is non-stationary. But a 1-order dif-

ferencing operation can make {yt} stationary: ∆yt = yt − yt−1 = µ + xt. We then call

19

2.2. ECONOMETRIC TIME SERIES FORECASTING

models with the form of (2.19) the AutoRegression Integrated Moving Average model,
noted ARIMA(p, 1, q). Here, integration is the reverse of differencing operation. An
ARIMA(p, 1, q) model can be rewritten with the backshift operator B:

yt − yt−1 = (1− B)yt = µ+ xt. (2.20)

Sometimes multiple times of differencing can be necessary to make a time series sta-
tionary. In this situation, one can construct an ARIMA(p, d, q) model, with p, d, and q
corresponding to the orders of AR, differencing, and MA terms.

Tab. 2.1 are some special cases of ARIMA models.

Table 2.1: Special cases of ARIMA models [14].

Model ARIMA Combination

White noise ARIMA(0, 0, 0) with no constant

Random walk ARIMA(0, 1, 0) with no constant

Random walk with drift ARIMA(0, 1, 0) with a constant

AutoRegression ARIMA(p, 0, 0)

Moving Average ARIMA(0, 0, q)

Parameters Estimation Many estimation methods exist for AR, MA, ARMA, and
ARIMA models, such as OLS in linear regression, MLE based on the normal distribution,
and Yule-Walker equation-based method. The discussions of these methods are far beyond
the content of this thesis and thus omitted.

The implementations of the model estimation methods are widely available on many
computational tools, like the statsmodels [15] and pmdarima [16] libraries in Python and
the forecast package [17] in R, e.g., the auto.arima() function in R library forecast
and the arima.auto_arima() function in Python package pmdarima employ a grid search
over p, d, and q, estimate the parameters, and by default select the combination of (p, d, q)
with the lowest AIC.2

Seasonal ARIMA

So far, we have talked about the non-seasonal data and the non-seasonal ARIMA models.
Nevertheless, in many cases, especially for economic and financial data, time series can
present noticeable periodic changes, e.g., a monthly time series can exhibit similar changes
every three months. We call these periodic changes seasonality. Time series which contain
seasonality are seasonal time series. Fig. 2.4 shows the quarterly Earnings Per Share
(EPS) of Coca-cola from 1983 Q1 to 2009 Q3.3 Fig. 2.5 demonstrates the monthly totals

2When selecting the best differencing order, the ICs are not always well practical, for the reason that
differencing changes the calculation of the likelihood function. It is favorable to find d with other methods
and select p and q with AICc afterward, which will be discussed later in the section.

3https://gist.github.com/f-loguercio/30b5b55c139f602efea645cc6f4f302b

20

https://gist.github.com/f-loguercio/30b5b55c139f602efea645cc6f4f302b

2.2. ECONOMETRIC TIME SERIES FORECASTING

of international airline passengers from 1949 to 1960.4 They exhibit an evident change
every four quarters and every 12 months.

1984 1988 1992 1996 2000 2004 2008
Date

0.0

0.2

0.4

0.6

0.8

1.0

E
ar

ni
ng

s
P

er
 S

ha
re

 ($
)

Figure 2.4: Coca-Cola quarterly EPS from 1983 Q1 to 2009 Q3.

1950 1952 1954 1956 1958 1960
Date

100

200

300

400

500

600

A

ir
P

as
se

ng
er

s

Figure 2.5: Monthly totals of international airline passengers from 1949 to 1960.

ARIMA models can also deal with seasonal series as long as we include additional
seasonal terms.

A Seasonal ARIMA model adjusts the time series by differencing it with the seasonal
order, e.g., in Coca-Kola quarterly earnings data, we difference the earnings value of
the first quarter in the k + 1-th year with that of the same quarter in the k-th year

4https://rdrr.io/r/datasets/AirPassengers.html

21

https://rdrr.io/r/datasets/AirPassengers.html

2.2. ECONOMETRIC TIME SERIES FORECASTING

and perform that for all four quarters. This operation is called seasonal differencing :
(1− B4)yt = yt − yt−4.

A Seasonal ARIMA model is often written as ARIMA(p, d, q)(P,D,Q)s, where (p, d, q)
is the non-seasonal part of the model and (P,D,Q)s is the seasonal part. s is the series
period or seasonality (e.g., 12 for monthly data and 4 for quarterly data). It has the
following form:

Φ(B)Φs(Bs)(1− B)d(1− Bs)Dyt = c+Θ(B)Θs(Bs)εt,

where Φ(B) and Θ(B) are the same parameter representation in (2.6) and (2.14). Φs(Bs) =
1 −

∑P
i=1ΦiBsi and Θs(Bs) = 1 −

∑Q
j=1ΘjBsj are the parameter representation for the

seasonal part of ARIMA(p, d, q)(P,D,Q)s. A more commonly used form is:

(1− B)d(1− Bs)Dyt = c+
Θ(B)Θs(Bs)

Φ(B)Φs(Bs)
εt.

The Seasonal ARIMA models the seasonal time series with the same non-seasonal
ARIMA, and the seasonal terms are then integrated simply by multiplication.

The aforementioned auto.arima()/auto_arima() functions in R and Python can also
perform order selection and parameter estimation for Seasonal ARIMA models.

Forecasting with ARIMA Models

Performing point forecast of ARIMA models is straightforward [14]:

1. Put yt on the left side of the model equation and all other terms on the right side.

2. Replace t with T+h, where T and h are the observation length and forecast horizon.

3. Replace the current errors with 0 and the past errors with residuals.

Consider an ARIMA(2, 1, 2) model:

(1− ϕ1B − ϕ2B2)(1− B)yt = (1 + θ1B + θ2B2)εt. (2.21)

For the first step, reform (2.21) into:

yt = (1 + ϕ1)yt−1 − (ϕ1 − ϕ2)yt−2 − ϕ2yt−3 + εt + θ1εt−1 + θ2εt−2. (2.22)

Substitute t with T + 1 (for one-step prediction) in (2.22):

yT+1 = (1 + ϕ1)yT − (ϕ1 − ϕ2)yT−1 − ϕ2yT−2 + εT+1 + θ1εT + θ2εT−1.

Then for the third step, we have the forecasting model:

ŷT+1|T = (1 + ϕ1)yT − (ϕ1 − ϕ2)yT−1 − ϕ2yT−2 + θ1eT + θ2eT−1.

For multi-step forecasting, replace future observations with their forecasts and future
errors with 0:

ŷT+2|T = (1 + ϕ1)ŷT+1|T − (ϕ1 − ϕ2)yT − ϕ2yT−1 + θ2eT ,

ŷT+3|T = (1 + ϕ1)ŷT+2|T − (ϕ1 − ϕ2)ŷT+1|T − ϕ2yT ,

...

This way, all future values can be obtained recursively.
The prediction intervals of ARIMA models are largely beyond the scope of this thesis

and thus omitted.

22

2.2. ECONOMETRIC TIME SERIES FORECASTING

2.2.2 Exponential Smoothing

Simple Exponential Smoothing

Exponential smoothing is initially an intuitive forecasting model. For a time series {yt},
exponential smoothing uses the linear combination of historical observations to predict
the value in the next time step, with the weights decaying exponentially:

wyt−1 + w2yt−2 + · · · =
∞∑
j=1

wjyt−j,

where 0 < w < 1. Since the combination should be a weighted average, by taking∑∞
j=1w

j = w
1−w

, we can write the exponential smoothing model as:

yt = (1− w)(yt−1 + wyt−2 + w2yt−3 + · · ·) = (1− w)
∞∑
j=1

wj−1yt−j. (2.23)

Equation (2.23) is called the Simple Exponential Smoothing (SES) model. It has a
more commonly used formula with 0 < α < 1 as the smoothing parameter:

yt = α
∞∑
j=0

(1− α)jyt−j.

SES also has a component form [14] with a forecast equation and a level equation:

Forecast equation ŷt+h|t = ℓt, (2.24)
Level equation ℓt = αyt + (1− α)ℓt−1. (2.25)

ℓt is the level of the series at time t. The forecast equation dictates that the forecast
value at t + 1 is the estimated level at time t. The level equation exhibits the form of
exponential smoothing and gives the estimation value of the level at each t.

Holt’s Trend and Holt-Winters’ Trend-Seasonal Method

In 1956, Charles Holt extended the SES to capture the trend [18]:

Forecast equation ŷt+h|t = ℓt + hbt, (2.26)
Level equation ℓt = αyt + (1− α)(ℓt−1 + bt−1), (2.27)
Trend equation bt = β∗(ℓt − ℓt−1) + (1− β∗)bt−1. (2.28)

0 < α < 1 and 0 < β∗ < 1 are the smoothing parameters for level and trend respec-
tively. Holt’s trend method has a level ℓt component consisting of a weighted average of
the observation yt and the combination of historical level and trend (ℓt−1 + bt−1) at time
t− 1. Holt also leverages the weighted average of the estimated trend (ℓt − ℓt−1) at time
t and the previously calculated trend bt−1 to model bt. The forecast is no longer flat as
SES but trending.

23

2.2. ECONOMETRIC TIME SERIES FORECASTING

Holt’s trend method has another version where the estimated trend is damped rather
than a linear one [19], by adding a damping parameter ϕ into (2.26)-(2.28):

Forecast equation ŷt+h|t = ℓt + (ϕ+ ϕ2 + · · ·+ ϕh)bt,

Level equation ℓt = αyt + (1− α)(ℓt−1 + ϕbt−1),

Trend equation bt = β∗(ℓt − ℓt−1) + (1− β∗)ϕbt−1.

0 < ϕ < 1 is the damping parameter. With the effect of ϕ, the trend decays to a
constant at some point in the future. When h→∞, ŷt+h|t → ℓT + ϕbT/(1− ϕ).

In 1957 and 1960, Holt[18] and Winters [20] extended Holt’s trend method so that
their model can model the seasonality:

Forecast equation ŷt+h|t = ℓt + hbt + st+h−m(k+1), (2.29)
Level equation ℓt = α(yt − st−m) + (1− α)(ℓt−1 + bt−1), (2.30)
Trend equation bt = β∗(ℓt − ℓt−1) + (1− β∗)bt−1, (2.31)

Seasonal equation st = γ∗(yt − ℓt−1 − bt−1) + (1− γ∗)st−m. (2.32)

m is the seasonal period, and k = ⌊(h−1)/m⌋means the seasonal estimation is from the
last period of the seasonal term. The level equation indicates a weighted average between
the seasonally adjusted value (yt − st−m) and the non-seasonal value (ℓt−1 + bt−1). The
seasonal equation shows a weighted average between the current and the same seasons
in the last period. α is the smoothing parameter for the level, β∗ is the smoothing
parameter for the trend, and γ is the smoothing parameter for the season. 0 < α, β∗ < 1,
0 < γ < (1− α) [14].

The equations (2.29)-(2.32) show the additive form of Holt-Winters’ seasonal model.
Multiplicative seasonality can sometimes exist; thus Holt-Winters’ model has a multi-
plicative form:

Forecast equation ŷt+h|t = (ℓt + hbt)st+h−m(k+1),

Level equation ℓt = α
yt

st−m

+ (1− α)(ℓt−1 + bt−1),

Trend equation bt = β∗(ℓt − ℓt−1) + (1− β∗)bt−1,

Seasonal equation st = γ∗ yt
ℓt−1 − bt−1

+ (1− γ∗)st−m.

Like Holt’s trend method, Holt-Winters’ seasonal method also has a trend-damped
version. For the multiplicative seasonal method, its damped version is:

Forecast equation ŷt+h|t = [ℓt + (ϕ+ ϕ2 + · · ·+ ϕh)bt]st+h−m(k+1),

Level equation ℓt = α
yt

st−m

+ (1− α)(ℓt−1 + ϕbt−1),

Trend equation bt = β∗(ℓt − ℓt−1) + (1− β∗)ϕbt−1,

Seasonal equation st = γ∗ yt
ℓt−1 − ϕbt−1

+ (1− γ∗)st−m.

24

2.2. ECONOMETRIC TIME SERIES FORECASTING

State Space Models Representation

If we take (2.24) and (2.25) and rearrange the level equation, we have:

ℓt = αyt + (1− α)ℓt−1

= ℓt−1 + α(yt − ℓt−1)

= ℓt−1 + α(yt − ŷt|t−1)

= ℓt−1 + αet,

where et = yt− ℓt−1 = yt− ŷt|t−1 is the residual of the estimation from time t. This means
we must adjust the level for the estimation process through t = 1, ..., T . We can also write
yt = ℓt−1 + et so that the observation of time t can be represented by the previous level
plus an error term [14].

If we specify a distribution for et, e.g., we choose the normal distribution for the
additive error: εt = et ∼ NID(0, σ2), we then have a state space model:

Measurement equation yt = ℓt−1 + εt, (2.33)
State equation ℓt = ℓt−1 + αεt. (2.34)

We call (2.33) and (2.34) an innovations state space model, for εt represents the in-
cremental information, i.e., the innovation, at time t, as explained in (2.16). The mea-
surement equation shows that the observation yt has two parts: the predictable part level
ℓt−1 and the unpredictable part random error εt. The state equation shows how the level
changes through time.

Similarly, we can derive the state space model representation for Holt’s trend method
(with β = αβ∗, 0 < β < α for a simpler representation):

Measurement equation yt = ℓt−1 + bt−1 + εt, (2.35)
State equation 1 ℓt = ℓt−1 + bt−1 + αεt, (2.36)
State equation 2 bt = bt−1 + βεt. (2.37)

Holt-Winters’ seasonal method also has its state space model’s representation (with
γ = (1− αγ∗), 0 < γ < 1− α for simplicity):

Measurement equation yt = ℓt−1 + bt−1εt,

State equation 1 ℓt = ℓt−1 + bt−1 + αεt,

State equation 2 bt = bt−1 + βεt,

State equation 3 st = st−m + γεt.

We use a more general notation for state space models: ETS(·, ·, ·). Each · term
stands for Error, Trend, and Seasonality, respectively. It can also be interpreted as
ExponenTial Smoothing. A taxonomy for ETS models with every component having its
own possible values is as follows: Error = {A, M}, Trend = {N, A, Ad}, and Seasonality
= {N, A, M}, where “A” refers to “Additive”, “Ad” means “Additive damped”, “M” means
“Multiplicative”, and “N” means “None” [14].

The SES model is equivalent to an ETS(A,N,N) model. Holt’s trend method equals
an ETS(A,A,N) model and ETS(A,Ad,N) for the damped one. The Holt-Winters’ ad-
ditional seasonal method is an ETS(A,A,A), while its multiplicative one corresponds to
ETS(A,A,M).

25

2.2. ECONOMETRIC TIME SERIES FORECASTING

Parameter Estimation and Model Selection

For ETS models, the parameters to estimate are as follows:

• The smoothing parameters: α, β, γ, and ϕ.

• The initial states: ℓ0, b0, s0, s−1, ..., s−m+1.

Commonly, we use OLS or MLE method to estimate the parameters. When the error
term is additive, OLS and MLE give the same result, while for multiplicative error, MLE
will give out different estimations for the parameters [21].

For model selection, apart from the aforementioned AIC and BIC, a corrected version
of the AIC, i.e., AICc is also used for small sample bias:

AICc = ln σ̃2
k +

2k

T − k − 1
.

While multiplicative models are often used for strictly positive time series, they can be
numerically unstable if they contain zeros or negative values. Thus, only additive models
will be considered in these situations. Functions like AutoETS() in sktime [22] and ets()
in forecast [17] both provide automatic interfaces for modeling ETS models.

Forecasting with ETS Models

Point forecasting with ETS models is straightforward: Iterating the model with t =
T, T + 1, ..., T + h and setting εt = 0,∀t > T , we can easily get the point forecast from
the ETS model.

For an ETS(A,A,N), retake (2.35) and (2.37):

yt = ℓt−1 + bt−1 + εt,

ℓt = ℓt−1 + bt−1 + αεt,

bt = bt−1 + βεt.

Replace t with T + 1, we have: yT+1 = ℓT + bT + εT+1, so ŷT+1|T = ℓT + bT .
Similarly, yT+2 = ℓT+1+bT+1+εT+2 = ℓT+bT+αεT+2+bT+βεT+1 = ℓT+2bT+(α+β)εT ,

so ŷT+2|T = ℓT + 2bT . This is equivalent to the original representation of Holt’s trend
method in (2.26), (2.27), and (2.28).

ETS models can also generate prediction intervals. For most of the ETS models, the
prediction intervals (PI) can be written as:

PI = ŷT+h|T ± cσ̂h,

where σ̂h is the standard deviation of the forecasting, and c is the multiplier to be selected
for the coverage probability. For the two commonly used coverage probabilities, i.e., 80%
and 95%, c is set to 1.28 and 1.96, respectively. More details are explained in [21].

26

2.2. ECONOMETRIC TIME SERIES FORECASTING

ARIMA v.s. ETS

ARIMA models and ETS models can be equivalent in some cases. Tab. 2.2 presents an
equivalence relationship between some ARIMA and ETS models.

While some ARIMA and ETS models are identical with specific parameter settings,
they are generally not interchangeable. Although the information criteria can be beneficial
when selecting the orders, they cannot be used among different categories of models, i.e.,
one cannot use the AIC to compare an ARIMA and an ETS model. Thus, it is usually
favorable to perform time series cross-validation to compare ARIMA and ETS models
rather than using the information criteria.

Table 2.2: Equivalence relationships between some ARIMA and ETS models [14].

ARIMA model ETS model Parameters Setting

ARIMA(0, 1, 1) ETS(A,N,N) θ1 = α− 1

ARIMA(0, 2, 2) ETS(A,A,N) θ1 = α + β − 2
θ2 = 1− α

ARIMA(1, 1, 2) ETS(A,Ad,N)
ϕ1 = ϕ
θ1 = α + ϕβ − 1− ϕ
θ2 = (1− α)ϕ

ARIMA(0, 1,m)(0, 1, 0)m ETS(A,N,A) -

ARIMA(0, 1,m+ 1)(0, 1, 0)m ETS(A,A,A) -

ARIMA(1, 0,m+ 1)(0, 1, 0)m ETS(A,Ad,A) -

2.2.3 Multivariate Time Series and Vector AutoRegression

So far, all the models we considered are for univariate time series, i.e., only one series
is being analyzed. Sometimes, several time-aligned series can exhibit interdependencies
among them. We call the combination of multiple time series a multivariate time series.
One example can be the stock market. The change in one company’s stock price can
diffuse to other companies promptly and vice versa. The investors are also willing to
know their Return On Investment (ROI) relationships among multiple assets. Fig. 2.6
shows the quarterly revenues of Apple Inc. by different product types, which turns out
to be a multivariate time series.5

Vector AutoRegression Model

The Vector AutoRegressive (VAR) model allows modeling this kind of interdependencies
or inter-influence relationships among series (or variables). In a VAR model, all variables
are endogenous as they influence other variables equally.

5Data retrieved from Apple Investor Relations: https://investor.apple.com/investor-relat
ions/default.aspx.

27

https://investor.apple.com/investor-relations/default.aspx
https://investor.apple.com/investor-relations/default.aspx

2.2. ECONOMETRIC TIME SERIES FORECASTING

Jul-08 Jan-11 Jul-13 Jan-16 Jul-18 Jan-21
Date

$0B

$20B

$40B

$60B

$80B

$100B

$120B Mac Net Sales
iPod Net Sales
Services Net Sales
Wearables, Home and Accessories
iPad Net Sales
iPhone Net Sales

Figure 2.6: Apple Inc. quarter revenue by product type.

This part will only discuss the simplest VAR model: VAR(1). Other VAR models
with higher orders are much beyond the scope of the thesis. The content about these
models can be found in [23]. A 2-dimensional VAR(1) model has the following form:

y1,t = ϕ1,0 + ϕ11,1y1,t−1 + ϕ12,1y2,t−1 + ε1,t,

y2,t = ϕ2,0 + ϕ21,1y1,t−1 + ϕ22,1y2,t−1 + ε2,t.

ϕi,0 is the constant term and ϕij,ℓ means the influence level that yj has at time ℓ on
variable yi. εi,t are white noise processes.

Parameter Estimation and Model Selection

If the multivariate series are stationary, we can directly fit the VAR model with the
historical data, and the model is called VAR in levels. When the series are non-stationary,
we need to use the differences of the historical observations to fit the model, which is called
VAR in differences. For each case, the OLS method is performed on εi,t to estimate the
parameters.

For higher-order VAR(p) models, information criteria are also applicable for determin-
ing the order p. Apart from the AIC, BIC, and AICc, Lütkepohl [23] suggested two other
information criteria: The Final Prediction Error (FPE) criterion and the Hannan-Quinn
(HQ) criterion. Here are the vectorized AIC, BIC, FPE, and HQ definitions.

The vectorized AIC is defined as:

AIC(p) = ln det (Σ̃u(p)) +
2

T
pK2.

The vectorized BIC (often called the Schwarz Criterion (SC)) is defined as:

SC(p) = ln det (Σ̃u(p)) +
lnT

T
pK2.

28

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

The FPE criterion is defined as:

FPE(p) =
[
T +Kp+ 1

T −Kp− 1

]K
det (Σ̃µ(p)).

Moreover, the HQ criterion is defined as follows:

HQ(p) = ln |Σ̃µ(p)|+
2 ln (lnT)

T
pK2,

where T is the sample size, K is the dimension of the time series, and Σ̃µ(p) is an estimate
of the covariance matrix Σµ(p) of the white noise given by the approximation of the one-
step-ahead forecast MSE.

The functions VAR() in R package vars [24] and in Python library statsmodels [15]
both use the four ICs mentioned above to determine VAR’s order.

Forecasting with VAR Models

VAR models can provide predictions for every variable included. The forecasting is gen-
erated iteratively by following the same process for ARIMA models:

1. Put yts on the left side of the model equation and all other terms on the right side.

2. Replace t with T+h, where T and h are the observation length and forecast horizon.

3. Replace the current errors with 0.

Every VAR(p) model for K-dimension time series contains K × (1 + pK) parameters.
For example, a VAR(3) model for a 5-dimension time series has 80 parameters. Due to the
high computation complexity which grows with the order, it is often favorable to choose
SC, for it reports lower orders than AIC when choosing the proper order for VAR models
for prediction.

2.3 Time Series Decomposition Prior to Forecasting
In this section, we present a helpful tool to analyze time series data, i.e., time series
decomposition that segregates a time series into several components, as well as another
decomposition-based econometric method, i.e., the Theta method.

2.3.1 Time Series Components

A time series can have many underlying patterns, and decomposition is one method that
can reveal them by splitting a time series into several different components. A time series
that consists of several components can be decomposed additively into the following form:

yt = St + Tt +Rt, (2.38)

where St, Tt, and Rt represent the seasonal, trend-cycle, and residual terms. We call this
a decomposition of time series. Furthermore, (2.38) represents an additive decomposition.

29

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

A time series can be decomposed in a multiplicative way:

yt = St · Tt ·Rt. (2.39)

Equation (2.39) is called the multiplicative decomposition.
An additive decomposition is more suitable if the variation of the seasonal term or

the trend-cycle does not vary with the time series level. If one of them is proportional to
the time series level, a multiplicative decomposition is more appropriate [14]. In financial
time series, the multiplicative one is more often used.

The multiplicative decomposition can be cast into the additive one by performing the
log transformation:

yt = St · Tt ·Rt ⇔ log yt = logSt + log Tt + logRt.

2.3.2 Two Decomposition Methods of Time Series

There are many decomposition methods for time series. In this section, we will introduce
the two most commonly used ones, which are also the most intuitive: the canonical
decomposition and the STL decomposition.

Moving Average Smoothing

The Moving Average (MA) being discussed in this section is not the same as the Moving
Average model, which refers to a moving average of error terms, as introduced in the
previous section. The trend-cycle estimated by an s-order MA, often written as s-MA for
simplicity, can be expressed as:

T̂t =
1

s

k∑
j=−k

yt+j,

where s = 2k + 1. The trend-cycle estimation at time t is calculated by averaging values
in a window around t of size s, and the window slides through all time steps. Thus, we
also call it a sliding window. The s-MA reduces the randomness in the data and gives a
smoother trend-cycle term. It is a powerful and frequently used tool in financial analysis.
Fig. 2.7 gives an example, showing the daily close price of Apple Inc. in recent months
and its MA-Smoothed lines.6

Centered Moving Average We can perform an MA to another MA to make an even-
order MA symmetric. For example, a 2-MA can be applied to a 4-MA, i.e., 2× 4-MA:

T̂t =
1

2

(
1

4
(yt−2 + yt−1 + yt + yt+1) +

1

4
(yt−1 + yt + yt+1 + yt+2)

)
=

1

8
yt−2 +

1

4
yt−1 +

1

4
yt +

1

4
yt+1 +

1

8
yt+2.

It is called a centered moving average of order 4. It is pretty helpful in eliminating the
impact of seasonality in the data, as the first and last terms which belong to the same

6Data retrieved from Yahoo! Finance: https://finance.yahoo.com/quote/AAPL?p=AAPL.

30

https://finance.yahoo.com/quote/AAPL?p=AAPL

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

2020-09
2021-01

2021-05
2021-09

2022-01
2022-05

2022-09
2023-01

2023-05

Date

100

120

140

160

180
A

A
P

L
C

lo
se

 P
ric

e
($

)
Original data
20-MA
50-MA
100-MA

Figure 2.7: Apple Inc. (AAPL) daily stock price and its MA-Smoothed lines.

season are averaged. For example, for a 2 × 4-MA applied to the Coca-Cola quarterly
earnings data mentioned in Sec. 2.2.1, the seasonal term can be removed entirely, as
demonstrated in Fig. 2.8. Similarly, 2× 12-MA and 7-MA can be exploited to remove the
monthly and daily seasonalities respectively. In general, to extract the trend-cycle of a
time series with a seasonal period of s, we apply a 2× s-MA for an even s and an s-MA
for odd ones.

To make a centered moving average symmetric, an even-order MA should be followed
by an even-order MA and an odd-order MA should be followed by an odd-order MA [14].

Canonical Decomposition

Generally, a decomposition method will segregate a time series into trend-cycle, seasonal,
and residual components. Thanks to the centered MA, we can easily extract the trend-
cycle T̂t from the time series. Here, we will describe the most used decomposition method,
i.e., the classical or canonical decomposition of time series.

As described previously, depending on the data’s nature, one may prefer additive or
multiplicative decomposition. The canonical additive decomposition has the following
procedures:

1. Extract the trend-cycle component T̂t by the centered MA method described above,
concerning different s.

2. Detrend the time series. yt − T̂t.

3. Calculate the seasonal component Ŝt. It has three steps:

• Average the values in each seasonal position, e.g., for monthly data, averaging
all the detrended January values to have the seasonal value of January.

• Arrange the seasonal values for each seasonal period.

31

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

1984 1989 1994 1999 2004 2009
Date

0.0

0.2

0.4

0.6

0.8

1.0
E

ar
ni

ng
s

P
er

 S
ha

re
 ($

)
Original data
2 × 4-MA

Figure 2.8: Coca-Cola quarterly EPS and its 2× 4-MA line.

• Tile the ordered seasonal values several times for the final seasonal component.

4. Calculate the residuals by subtracting the trend-cycle and the seasonal components
from the time series. R̂t = yt − T̂t − Ŝt.

The multiplicative decomposition has similar procedures to the additive one, except
the multiplicative one replaces the subtraction with a division for the detrending step
and residual calculation. Fig. 2.9 demonstrates both the additive and the multiplicative
decomposition for the Coca-Cola quarterly earnings.

Although the canonical time series decomposition method is still widely used, it has
several following shortcomings:

• Canonical decomposition cannot generate the first and last s trend-cycle values due
to the s-MA applied and also leaves NaN values for the residual component at the
same positions.

• Canonical decomposition supposes the seasonal term in one period repeats every
season, which is reasonable in many cases. However, seasonal terms may vary with
time for long series, making this assumption irrational.

• Canonical decomposition is not robust to outliers.

In 1990, Cleveland et al. [25] proposed a decomposition method called STL decom-
position that can address the aforementioned problems of the canonical decomposition
method. STL stands for Seasonal-Trend decomposition using LOESS. To demonstrate
how STL decomposition works, LOESS must be detailed.

32

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

0.0

0.5

1.0
da

ta
Additive decomposition

0.0

0.5

1.0
Multiplicative decomposition

0.25

0.50

0.75

tre
nd

-c
yc

le

0.25

0.50

0.75

0.05

0.00

0.05

se
as

on
al

1.0

1.2

1984 1988 1992 1996 2000 2004 2008
Date

0.1

0.0

0.1

re
si

du
al

1984 1988 1992 1996 2000 2004 2008
Date

0.8

1.0

Figure 2.9: Additive and multiplicative decompositions of Coca-Cola quarterly earnings.

LOESS Regression

Generally, the relationship between two variables can be intricate, and it is thus insuffi-
cient to describe this relationship with straight lines or parametric curves. In this case,
the nonparametric regression can be beneficial. The difference between parametric and
nonparametric methods lies in whether we assume a certain kind of relationship for the
data, e.g., a linear relationship can be modeled by a linear equation where we only need
to calculate the model parameters. In contrast, an analysis based only on the data with-
out assuming any model type is a nonparametric method. Without any limitations on
the model type, the nonparametric methods usually fit a curve that better describes the
relationship of the variables than the parametric ones.

LOESS stands for LOcal regrESSion or LOcally Estimated Scatterplot Smoothing. It
is a nonparametric robust locally weighted regression method for smoothing a scatterplot,
(xi, yi), i = 1, ..., n, in which the fitted value at xk is the value of a polynomial fit to the
data using weighted least squares, where the weight for (xi, yi) is large if xi is close to xk

and small if it is not [26].
LOESS splits the data into several small subsections, performs weighted linear regres-

sions on different subsections, and connects the center of these curves to form the complete
regression curve. Specifically, LOESS is defined by the following sequence of operations:

1. For one data point, often called the focal point, select k nearest points around it to
form a local window. Every focal point has a corresponding local window.

33

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

2. Calculate the weights of every point in the window through a weight function W .

3. Fit a weighted linear regression in the window. For n focal points, we have n
weighted linear regressions.

4. Connect the center points of the n weighted regressions to form the final fitted curve.

Based on the above description, there are several tunable parameters for a LOESS
regression:

• Local window length n.

• Weight function W (x).

• Number of iterations i. It might be favorable to iterate the local regression several
times.

• Regression interval δ. It might not be necessary to perform regression for every
point. We can fit δ-interval regressions and perform interpolations for those non-
fitted data points.

By default, the selection of local window length n is 0.49 times the length of data but
can vary with different problems. In [26], the author discussed using d-degree polynomial
regression for the local window and concluded that d = 1, i.e., the linear regression, strikes
a good balance between the computational ease and the fitting goodness in most cases.
Here, we will discuss the weight function and the regression iteration.

Weight Functions The weight function W (x) is not fixed but should have the following
properties [26]:

• W (x) > 0,∀|x| < 1.

• W (x) = 0,∀|x| ≥ 1.

• W (x) = W (−x).

• W (x) is a nonincreasing function for x ≥ 0.

Here the idea of choosing a weight function is that it is positive and symmetric, applies
on [−1, 1], and has greater values in the middle (around 0) and smaller values on two sides
(-1 and 1) to distribute the weight accordingly. The author proposed to use two weight
functions as follows:

Bisquare function B(x) =

{
(1− |x|2)2, for |x| < 1,

0, for |x| ≥ 1.

Tricube function T (x) =

{
(1− |x|3)3, for |x| < 1,

0, for |x| ≥ 1.

34

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

The difference between the bisquare and the tricube functions is that the tricube one
decreases the weights faster for the neighbors, resulting in better smoothing but increasing
the residual variance.

For the weighted linear regression, by default, LOESS calculates the neighborhood
weights using the tricube weight function:

Neighborhood weights ηi = T

(
|xi − x|
λq(x)

)
,

where x is the focal point’s abscissa, and xi is the i-th data’s abscissa in the local window.
For q ≤ n, λq(x) is the distance of the q-th farthest xi from x in the window of length n.
For q > n, λq(x) = λn(x)

n
q
.

A robust version of LOESS called Robust LOESS also exploits the bisquare function
to calculate its robustness weights:

Robustness weight ρi = B

(
|ei|
6h

)
,

where ei = yi − ŷi is the residual of the current fitted value and h = median(|ei|) is the
median of |ei|. yi and ŷi are the i-th data’s ordinate and its estimation. The final weights
the robust LOESS use are the product of ηi and ρi.

Iteration Every iteration for the weighted regression in the local window in LOESS is
conducted in the following sequences:

1. Calculate the neighborhood weight ηi with T (x) for every i in the local window.

2. Perform the weighted regression with ηi and calculate ŷi.

3. Calculate the residual ei.

4. Calculate the robustness weights ρi with B(x).

5. Replace ηi with ηi × ρi and repeat steps 2, 3, and 4.

This procedure does not have a certain converge criterion, but practically it converges
within two iterations.

Interpolations The computational time will grow drastically during the weighted re-
gression if every point in the local window is calculated. In contrast, if we regress on only
several data points and use interpolation in other places, the whole algorithm will compute
faster without losing too much effectiveness. Linear, quadratic, and cubic interpolations
can be used.

The distance δ within which to use interpolation instead of weighted regression is
suggested to be δ = 0.01× T for T > 5000 where T is the length of the data. In practice,
for each xi, regressions are skipped for points closer than δ. The subsequent regression
is fitted for the farthest point within δ of xi, and all points in between are estimated
by linearly interpolating between the two regression fits [15]. Fig. 2.10 gives a simple
illustration of a LOESS regression.

35

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

0 2 4 6 8 10 12
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0
y

LOESS
OLS
data

Figure 2.10: A LOESS example.

STL Decomposition

As revealed by its name, A Seasonal-Trend decomposition procedure based on LOESS,
Cleveland et al. [25] leverage the LOESS regression for this decomposition algorithm. For
simplicity, the LOESS used in STL decomposition is formalized as ŷt ← LOESS(yt, n),
where n is the local window length.

STL decomposition segregates a time series into the same form as the additive canon-
ical decomposition: yt = St + Tt + Rt. It consists of an inner loop and an outer loop
where the former fits the trend and calculates the seasonal component while the latter
adds robustness to the algorithm.

In
it

ia
liz

at
io

n

D
et

re
nd

in
g

C
yc

le
-S

ub
se

ri
es

Sm
oo

th
in

g

Lo
w

-P
as

s
F
ilt

er
in

g

C
yc

le
-S

ub
se

ri
es

D
et

re
nd

in
g

D
es

ea
so

na
liz

in
g

Tr
en

d
Sm

oo
th

in
g

Figure 2.11: The inner loop of STL decomposition.

The Inner Loop Every inner loop performs a seasonal smoothing that updates the
seasonal component S

(k)
t in the current loop k and a trend smoothing that updates the

36

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

trend component T
(k)
t . The inner loop has six steps, as demonstrated in Fig. 2.11.

The Outer Loop The outer loop of STL decomposition is designed for robustness
against anomalies. After the inner loop is executed once, the residual term Rt = yt−Tt−St

is tested for outliers. In cases where outliers are detected in Rt, the LOESS regression
used in Detrending and Trend Smoothing inside the inner loop will be replaced by the
Robust LOESS, which uses a bisquare weight function and the loop repeats. In this case,
the inner loop repeats only once.

Usually, for the inner loop, very few (often two) iterations suffice, and the outer loop
iterates often 15 times to ensure a certain convergence.

Algorithm 1 gives a detailed illustration of the whole procedure of the STL de-
composition. One can easily exploit STL decomposition by calling STL() provided by
statsmodels [15] in Python or stl() in the R package forecast [17].

75

100

125

da
ta

Canonical decomposition

75

100

125

STL decomposition

80

100

120

tre
nd

-c
yc

le

80

100

120

10

0

10

se
as

on
al

20

0

1996 2000 2004 2008 2012 2016
Date

5

0

5

re
si

du
al

1996 2000 2004 2008 2012 2016
Date

5

0

5

Figure 2.12: Comparison of canonical and STL decomposition of the production of elec-
trical equipment in the EU.

Fig. 2.12 gives a comparison of canonical and STL decompositions of the production of
electrical equipment in the EU.7 We can observe the seasonal term of STL decomposition
varies with time and the financial crisis in the year of 2008 is more clearly described by
STL than by the canonical one.

7Data retrieved from Eurostat: https://ec.europa.eu/eurostat/statistics-explained/index
.php?title=Archive:Manufacture_of_electrical_equipment_statistics_-_NACE_Rev._2

37

https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Manufacture_of_electrical_equipment_statistics_-_NACE_Rev._2
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Archive:Manufacture_of_electrical_equipment_statistics_-_NACE_Rev._2

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

Algorithm 1 STL Decomposition
Require: Time series yt, frequency n(p), LOESS parameters n(s), n(l), n(t), #inner/outer loops n(i), n(o)

1: function Detrending(yt, T
(k)
t)

2: return ỹ
(k)
t = yt − T

(k)
t

3: end function

4: function Cycle-SubseriesSmoothing(ỹ(k)t , n(p), n(s))
5: C̃

(k)
t ← reshape(ỹ(k)t , n(p)) ▷ Cycle-Subseries: Value of each position in the seasonal cycle of ỹ(k)t

6: if k == 0 then ▷ Smooth seasonal subseries
7: Ĉ

(k+1)
t ← LOESS(C̃(k)

t , n(s))
8: else
9: Ĉ

(k+1)
t ← RobustLOESS(C̃(k)

t , n(s))
10: end if
11: Ĉ

(k+1)
t ← expand(Ĉ(k+1)

t) ▷ Expand one point at each side
12: C

(k+1)
t ← concatenate(Ĉ(k+1)

t) ▷ Concatenat in time order
13: return C

(k+1)
t , t = −n(p) + 1,−n(p) + 2, ..., T + n(p)

14: end function

15: function Low-PassFiltering(C(k+1)
t , n(p), n(l))

16: C
(k+1)
t ← 3× n(p) × n(p)-MA(C(k+1)

t) ▷ Smooth C
(k+1)
t with three low-pass filters

17: L
(k+1)
t ← LOESS(C(k+1)

t , n(l)) ▷ Smooth C
(k+1)
t with LOESS filter

18: return L
(k+1)
t , t = 1, 2, ..., T .

19: end function

20: function Cycle-SubseriesDetrending(C(k+1)
t , L

(k+1)
t)

21: return S
(k+1)
t = C

(k+1)
t − L

(k+1)
t ▷ Detrend the cycle-subseries

22: end function

23: function Deseasonalizing(yt, S
(k+1)
t)

24: return R̃t = yt − S
(k+1)
t ▷ Deseasonalize the time series with S

(k+1)
t

25: end function

26: function TrendSmoothing(R̃t, n(t))
27: if k == 0 then ▷ Smooth the deseasonalized time series with LOESS
28: return T

(k+1)
t ← LOESS(R̃t, n(t))

29: else
30: return T

(k+1)
t ← RobustLOESS(R̃t, n(t))

31: end if
32: end function

33: procedure InnerOrOuterLoop(yt, n(i), n(o), n(p), n(s), n(l), n(t))
34: k = 0, T

(0)
t ≡ 0 ▷ Initialize the trend component at pass 0

35: repeat
36: ỹ

(k)
t ← Detrending(yt, T

(k)
t)

37: C
(k+1)
t ← Cycle-SubseriesSmoothing(ỹ(k)t , n(p), n(s))

38: L
(k+1)
t ← Low-PassFiltering(C(k+1)

t , n(p), n(l))

39: S
(k+1)
t ← Cycle-SubseriesDetrending(C(k+1)

t , L
(k+1)
t)

40: R̃t ← Deseasonalizing(yt, S
(k+1)
t)

41: T
(k+1)
t ← TrendSmoothing(R̃t, n(t))

42: k ++

43: until
max

t

(
|U(k)

t −U
(k+1)
t |

)
max

t

(
U

(k)
t

)
−min

t

(
U

(k)
t

) < 0.01 or k == n(i) or n(o) ▷ U
(k)
t can be either T

(k)
t or S

(k)
t

44: return St = S
(k+1)
t , Tt = T

(k+1)
t , Rt = yt − St − Tt

45: end procedure

38

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

Advantages and drawbacks of STL Compared with canonical decomposition, STL
has several advantages:

• The seasonal component extracted by STL can vary over time.

• The smoothness of the trend-cycle component can be controlled by manipulating
the LOESS regression.

• STL can provide a far more robust decomposition than the canonical one.

On the other hand, STL has some shortcomings:

• It provides only additional decomposition.

• It can only handle simple seasonality, i.e., it accepts only one frequency.

• It is robust but still less robust when facing abrupt changes in trend-cycle and
residual, especially when used for anomaly detection.

The first problem can be easily resolved by employing log transformation or Box-Cox
transformation described in [27]:

B(x, λ) =

{
xλ−1
λ

, if λ ̸= 0,

log (x), if λ = 0.

The second disadvantage is addressed by the MSTL decomposition proposed by Ban-
dara, Hyndman, and Bergmeir [28] where they use STL multiple times adapting to dif-
ferent seasonalities and thus construct a decomposition with multiple seasonal patterns:

yt = Ŝ1
t + Ŝ2

t + · · ·+ Ŝn
t + T̂t + R̂t.

The third issue can be mitigated by a recent algorithm called RobustSTL, and its
successor Fast RobustSTL both proposed by Wen et al. [29], [30] in 2019 and 2020. The
former seeks to extract the trend component robustly by solving a regression problem
using the LAD loss and bilateral filtering and then extracts the seasonal term with non-
local seasonal filtering. The latter extends RobustSTL to handle multiple seasonality by
extending the non-local seasonal filter in a weighted form and speeds up the decomposition
with a special generalized ADMM algorithm.

Decomposition Features

Once a time series is decomposed, one can propose some natural questions such as “How
strong are the contributions of those components?” or “Among multiple different time
series, which has the strongest/weakest trend or seasonality?”

Wang, Smith, and Hyndman [31] proposed a measure of the trend and seasonality
strengths. Consider a decomposition yt = Tt + St + Rt, where Tt, St, and Rt are the
trend-cycle, seasonal, and residual components.

For a time series that has a strong trend, the seasonally adjusted (deseasonalized)
series Tt+Rt should have a stronger variance than the residual itself, contributing a small

39

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

value of Var(Rt)
Var(Tt+Rt)

. In contrast, for a weak-trended series, the variances of the two terms
should be close. Therefore, the trend strength can be defined as:

FT = max

(
0, 1− Var(Rt)

Var(Tt +Rt)

)
.

Similarly, we can define the seasonality strength:

FS = max

(
0, 1− Var(Rt)

Var(St +Rt)

)
.

A small value of FT or FS represents a weak trend or seasonality and vice versa.
This measure is handy when finding the time series with the weakest/strongest trend and
seasonality features in multiple series.

2.3.3 Theta Method

Basic Theta Model

The Theta model is yet another econometric model initially proposed by Assimakopoulos
and Nikolopoulos [32] in 2000. It constructs a decomposition of time series of several
Theta lines through a coefficient θ by leveraging the second-order differences of the data.

A Theta line z(θ) should have the following representation:

z′′t (θ) = θ · y′′t , (2.40)

where y′′t = yt − 2yt−1 + yt−2 is the second-order differencing of the series y and refers to
the local curvatures of the time series.

For t = 1, 2, zt(θ) can be obtained by minimizing
∑T

t=1[yt − zt(θ)]
2. Then by solving

(2.40), the Theta model can be written as [33]:

zt(θ) = θyt + (1− θ)zt(0)

= θyt + (1− θ)(â+ b̂t), t=1,2,...

â, b̂ are the intercept and the slope, respectively, of the linear regression over y1, ..., yT
against 1, ..., T , i.e., zt(0), given by:

b̂ =
6

T 2 − 1

(
2

T

T∑
t=1

tyt −
T + 1

T

T∑
t=1

yt

)
,

â =
1

T

T∑
t=1

yt −
T + 1

2
b̂.

Depending on θ’s value, Theta lines can exhibit deflations or dilations of the original
time series. A coefficient of 0 < θ < 1 can lead to a flatter Theta line closer to zt(0)
and be utilized as a measure for the long-term pattern, e.g., trend. In contrast, a θ > 1
will dilate the Theta line further from zt(0); thus, the coarser Theta line can capture the

40

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

0

2000

4000

6000

8000
Original data

 = 0
 = 0.25
 = 0.5
 = 0.75

1950 1955 1960 1965 1970 1975 1980 1985
Date

0

2000

4000

6000

8000

Deflations

Dilations
Original data

 = 1.25
 = 1.5
 = 1.75
 = 2

Figure 2.13: Theta lines deflations and dilations of the Series N200 in M3-Competition.

short-term fluctuations in the series. Fig. 2.13 gives two examples of the series N200 in the
M3-Competition dataset [34], showing deflations and dilations with different θ values.8

The original Theta model consists of only two Theta lines, i.e., zt(0) and zt(2).
Nonetheless, there should be no limitation on the number and type of Theta lines. Ex-
ploiting a double-lined Theta model with θ = 0 and θ ̸= 2 can adjust the slope of the
forecasts [35] while a triple-lined model can leverage more patterns of the series to benefit
the forecasting [35]–[37].

However, combining its simplicity and efficiency, the double-lined Theta model is most
often used [38]:

yt = ωzt(θ1) + (1− ω)zt(θ2),

where ω and (1−ω) are the weights corresponding to the two Theta lines with ω = θ2−1
θ2−θ1

,
θ1 < 1, and θ2 ≥ 1.

Typically, we use a more straightforward model with θ = 0 for better maintenance of
the long-term trend pattern:

yt =
θ − 1

θ
zt(0) +

1

θ
zt(θ)

=
θ − 1

θ
(â+ b̂t) +

1

θ
zt(θ), θ ≥ 1. (2.41)

8Data retrieved from International Institute of Forecasters: https://forecasters.org/reso
urces/time-series-data/m3-competition/

41

https://forecasters.org/resources/time-series-data/m3-competition/
https://forecasters.org/resources/time-series-data/m3-competition/

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

Forecasting with Theta Models

Forecasting with the classic Theta model is carried out as follows [35]:

1. Deseasonalization. A seasonality significance test is performed on the original
series. If it is seasonal, seasonal adjustment with multiplicative decomposition is
conducted.

2. Theta decomposition. The seasonally adjusted series is decomposed into two
Theta lines, i.e., zt(0) and zt(2).

3. Extrapolation. zt(0) is linearly extrapolated as it is a linear regression, while zt(2)
is extended using SES in (2.24).

4. Combination. The predictions of zt(0) and zt(2) are averaged with equal weights.

5. Reseasonalization. The last period of the seasonal component is integrated into
the averaged forecasted values in the previous step if the series is tested seasonal.

Hyndman and Billah claimed in their paper [39] that the classic Theta model with
θ = 0 and θ = 2 is equivalent to an SES with drift since the level of the final prediction
is a combination of SES-extrapolated zt(2) with half of the slope of zt(0). Nikolopoulos
and Thomakos argued that although an SES with drift might resemble a Theta model, its
smoothing parameter is identical to the one obtained in the Theta model only by chance.
“In the case of the Theta model, the smoothing parameter a is calculated via a mean
squared error (MSE) minimization procedure on a different time series: Theta line with
θ = 2; not on the original data.” More discussions can be found in Nikolopoulos’ book
Forecasting with the Theta Method: Theory and Applications [37].

Generalized Theta Model

Despite its efficiency and simplicity, the classic Theta model has several obvious limita-
tions:

• As the drift part of Theta is a linear regression, the model can perform poorly on
the time series with a non-linear trend.

• Theta exploits the additional average of the trend and level components captured
by zt(0) and zt(θ), respectively. It leverages the multiplicative decomposition for
the seasonal part that is later integrated multiplicatively. However, not all time
series components are organized this way. In the ETS model, for example, different
components can have their own possible values.

Some modifications are proposed to overcome these limitations in terms of the non-
linear trend and multiplicative expression of the Theta model. We explore these modifi-
cations in what follows.

42

2.3. TIME SERIES DECOMPOSITION PRIOR TO FORECASTING

Trend Adjustment For non-linear trends, especially in exponential cases, substituting
the linear trend component zt(0) with an exponential one can be beneficial [35]:

Linear trend zt(0) = â+ b̂t,

Exponential trend xt(0) = p̂eq̂t, or
log(xt(0)) = log(p̂) + q̂t. (2.42)

p̂, q̂ are the intercept and slope of the similar linear regression over log y1, ..., log yT
against 1, ..., T .

Additive and Multiplicative Expression In the aforementioned ETS models, com-
ponents can be assembled in both additive and multiplicative ways, giving the model the
most flexibility in dealing with different time series accordingly. But as Theta averages
the trend and level for its forecast, assuming an additive expression of the connection be-
tween the trend and level components while always integrating a multiplicative seasonal
component. This can potentially limit the Theta model’s flexibility for various time series.

This problem can be addressed by introducing a different multiplicative expression of
the Theta lines:

Additive Theta line at(θ) = θyt + (1− θ)ut(0),

Multiplicative Theta line mt(θ) = yθt × u
(1−θ)
t (0),

where ut(0) denotes the linear trend or the exponential trend in (2.42). Then the Theta
model in (2.41) can be represented in both additive and multiplicative expressions:

Additive expression yt =
θ − 1

θ
ut(0) +

1

θ
at(θ),

Multiplicative expression yt = u
θ−1
θ

t (0)×m
1
θ
t (θ).

Another possible modification to the original Theta model is replacing the multiplica-
tive decomposition with an additive one for seasonal time series.

Similar to the ETS model, we now have a taxonomy for Theta models: Theta(·, ·, ·).
The first term represents the type of the Theta line (A, M), where “A” refers to an
“Additive” linear trend and “M” refers to a “Multiplicative” exponential trend. The
second term exhibits the type of the expression (A, M), where “A” refers to the “Additive”
expression and “M” means a “Multiplicative” one. The final term is the type of seasonal
decomposition, which can be “None”, “Additive” and “Multiplicative” [35].

Parameter Estimation and Model Selection

Theta model generates forecasts which are drifted according to coefficient b̂. The drift also
depends on the value of θ, being θ−1

θ
times that of b̂ [35]. θ should be selected precisely

to prevent a prediction too pessimistic or too optimistic than the reality.
A common way to estimate the θ value is to minimize the in-sample Mean Absolute

Error (MAE) of the model:

MAE =
1

T

T∑
t=1

|yt − ŷt|,

43

2.4. CONCLUSIONS

where ŷt is the one-step-ahead prediction given by the model. Spiliotis, Assimakopoulos,
and Makridakis [35] detailed that the optimization implemented with the Brent method,
which combines the golden-section search and the successive parabolic interpolation, en-
sures a rapid convergence into a reliable solution.

For the model selection, given different combinations of terms in Theta(·, ·, ·), their
complexities in terms of parameters are the same. Thus the information criteria described
in the previous section, e.g., AIC and BIC that penalize the model over its complexity,
do not apply to the Theta models. A primitive comparison over the MAE of different
models is thus performed, and the final model is selected accordingly.

2.4 Conclusions
This chapter comprehensively overviewed several state-of-the-art econometric models for
TSF tasks. It began with an introduction to basic time series concepts like stationarity
and ACF/PACF, followed by a detailed exploration of AR, MA, and ARMA models,
including their formulations, properties, and model selection methods. It also covered non-
stationary and seasonal ARIMA models, explaining their practical applications through
real-world examples.

ETS models, from the basic SES to the more complex Holt-Winters’ Trend Seasonal
model, were discussed, including their corresponding state space models and equivalence
to some ARIMA models. Furthermore, the chapter explored multivariate time series and
VAR models, along with their parameter estimation and model selection methods.

The chapter also delved into two decomposition methods, i.e., canonical and STL de-
compositions, as well as a decomposition-based econometric model, the Theta method.
These methods were explained using real-world examples, highlighting their procedures,
advantages, and limitations. Detailed comparisons between different decomposition meth-
ods and solutions to specific problems were provided.

This chapter also underscored the practical performance of these traditional methods,
particularly in linear time series, and their accessibility through various scientific libraries.
These methods are lauded for their fast convergence, robust mathematical proofs, and
human interpretability. This foundational knowledge sets the stage for the subsequent
discussion on deep learning solutions for the TSF problem.

44

Chapter 3

Deep Learning for Time Series
Forecasting

Contents
3.1 Traditional Deep Learning Models 46

3.1.1 Econometric and ML Models’ Bottlenecks 46

3.1.2 MLPs, CNNs, RNNs, Attention Mechanism, and Hybrid Models 47

3.2 Transformers for Time Series Forecasting 53

3.2.1 Transformer Basic . 53

3.2.2 A gentle survey of Transformers for TSF tasks 56

3.3 Conclusions . 61

Deep Learning (DL) is a subfield of Machine Learning (ML) that aims to mimic the
workings of the human brain in learning and understanding patterns in vast amounts
of data. Although it is part of AI research, DL itself has many unique techniques and
methods.

The name “Deep Learning” comes from the Artificial Neural Networks (ANNs) struc-
ture it uses. These networks can have many layers. Hence they are referred to as “deep”
networks. Each layer processes part of the information from the input data and passes
the processed information to the next layer. This layered processing allows DL models to
recognize and understand very complex patterns.

One significant application of DL models is in image and speech recognition, where
many of the state-of-the-art systems are based on DL models. For example, DL models
are used for object recognition in autonomous vehicles and for speech recognition and
understanding in voice assistants like Amazon’s Alexa or Apple’s Siri. Additionally, DL
models are used in natural language processing, machine translation, bioinformatics, and
many other fields [40].

The critical advantage of DL models is their ability to handle multiple inputs and
outputs, making them well-suited for TSF tasks. They are particularly useful in sce-
narios with complex, nonlinear dependencies between the input and output variables
or multivariate inputs and multi-step forecasting problems. DL architectures such as
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) offer

45

3.1. TRADITIONAL DEEP LEARNING MODELS

additional capabilities that further enhance their performance in TSF tasks. In recent
years, Transformer-based models have also been proposed to address the limitations of
traditional DL models. These models have achieved state-of-the-art results in various
TSF tasks, demonstrating their effectiveness and potential.

This chapter presents an overview of the state-of-the-art DL-based models for TSF. In
Sec. 3.1, we discuss the traditional DL models, i.e., models prior to Transformer models,
for the TSF problem and their advantages and disadvantages. Sec. 3.2 introduces the
state-of-the-art Transformer model and its variants dedicated to the TSF problem. We
conclude this chapter in Sec. 3.3.

3.1 Traditional Deep Learning Models
This section presents the traditional DL models for the TSF problem, including the econo-
metric and ML models’ bottlenecks and the traditional DL models prior to Transformer
(i.e., MLPs, CNNs, RNNs, Attention Mechanism, and hybrid models) and their advan-
tages and disadvantages.

3.1.1 Econometric and ML Models’ Bottlenecks

Forecasting time series data presents a unique set of challenges compared to more straight-
forward problems like classification or regression, as time series data incorporates the
added complexity of order or temporal dependence between observations. Consequently,
handling this data requires specialized techniques for fitting and evaluating models. How-
ever, the temporal structure of time series data can also be beneficial for modeling as
it provides additional information, such as trends and seasonality, which can improve
model accuracy. Traditionally, econometric methods like ARIMA have been widely ap-
plied to TSF tasks due to their effectiveness and well-established theoretical foundations.
However, these classical methods have limitations, such as:

• Data integrity. Incomplete, missing, or corrupted data is usually unsuitable for
analysis.

• Assumption of linearity. Econometric models may not be appropriate for mod-
eling complex nonlinear relationships.

• Fixed temporal dependence. Econometric models require the relationship be-
tween observations at different times to be diagnosed and specified, i.e., the model
must be retrained if the relationship changes.

• Limited forecasting horizon. Econometric models are limited to forecasting a
fixed number of steps ahead.

• Univariate modeling. Most econometric models are limited to univariate model-
ing.

ML techniques can effectively handle complex TSF problems with multiple input vari-
ables, complex nonlinear relationships, and missing data. These techniques, however,

46

3.1. TRADITIONAL DEEP LEARNING MODELS

often necessitate the use of hand-engineered features that are typically prepared by do-
main experts or practitioners with a background in signal processing. These features are
essential in representing and extracting the underlying patterns and relationships in the
time series data. Hence, their careful selection and engineering are crucial for the model’s
performance.

However, the process of feature engineering is time-consuming and requires domain
expertise. It is also prone to human error and bias. Furthermore, the features are often
specific to the problem at hand and cannot be reused for other tasks. These limitations
have motivated the development of DL models that can automatically learn the features
from the data, thereby eliminating the need for manual feature engineering.

3.1.2 MLPs, CNNs, RNNs, Attention Mechanism, and Hybrid
Models

Multiple Layer Perceptrons (MLPs)

MLPs are straightforward neural networks capable of approximating a mapping function
from input to output variables. In the context of MLPs, as demonstrated by Fig. 3.1,
each neuron in a layer is connected to all neurons in the previous layer. These connections
are associated with weights learned during the training process.

Figure 3.1: A four-layer MLP.

MLPs offer several key advantages that make them suitable for complex prediction
tasks. MLPs excel in capturing nonlinear relationships between input and output vari-
ables, an essential capability for problems with intricate and nonlinear dependencies.
Their resilience against noise in input data and ability to handle missing values also
make them ideal for real-world applications where data may be incomplete or corrupted.
Furthermore, MLPs can manage multiple input variables, making them apt for forecast-
ing problems with various predictors. They also support an arbitrary number of output
values, thereby facilitating multi-step forecasting.

Despite their strengths, MLPs face certain limitations when dealing with time series
data, particularly those with a large number of input variables. MLPs are not structured
to handle high-dimensional data nor to learn intricate nonlinear relationships between
different variables. They require a fixed number of log input variables, akin to traditional
econometric TSF methods. Also, like all neural networks, MLPs require careful hyper-
parameter tuning and are prone to overfitting if not appropriately trained. They cannot
model temporal dependencies, a key characteristic of time series data, due to the absence
of built-in mechanisms for handling sequential data and capturing temporal relationships.

47

3.1. TRADITIONAL DEEP LEARNING MODELS

Due to the limitations of MLP itself and the superiority of other DL models, MLPs
are rarely used directly in TSF tasks. However, MLPs can be used as a baseline model
for comparison with other DL models.

Convolutional Neural Networks (CNNs)

CNNs are a class of neural networks that use convolutional operations to extract features
from the input data. The convolution operations involve passing a filter, also known as
a kernel, over the input data, such as an image, to produce a transformed version called
a feature map. This filter then detects specific features or patterns in the input, like
edges, corners, or textures. The output feature map is a compressed representation of the
original input, highlighting the detected features. Fig. 3.2 illustrates this process where
the input image I is convolved with a kernel K to produce the output feature map I ∗K.1

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

I

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

I ∗K

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 3.2: A 2D convolution operation.

CNNs were originally developed to handle grid-like data, such as images, with high
efficiency. They can automatically and adaptively extract spatial hierarchies of features
using convolution and pooling operations. CNNs have demonstrated remarkable perfor-
mance on a variety of computer vision tasks, achieving state-of-the-art results in image
classification and playing a crucial role in hybrid models for emerging problems such as
object localization and image captioning. Fig. 3.3 shows the architecture of a typical CNN
for classification tasks.

The distinguishing characteristic of CNNs is that they operate directly on raw data,
such as raw pixel values, rather than relying on domain-specific or handcrafted features
derived from the raw data. By doing so, the model can learn to extract features that
are directly useful for the task automatically from the raw data, without the need for
pre-processing or feature engineering, which can improve the model’s performance and
reduce the amount of human labor involved in the modeling process. This is known
as representation learning, and CNNs can extract features in a way that is invariant to
transformations or distortions in the data, which is ensured by three architectural ideas,
i.e., local receptive fields, shared weights, and spatial or temporal subsampling.

The capability of CNNs to automatically learn and extract features from raw input
data can also be leveraged for TSF tasks. In this context, a time series can be viewed as
a one-dimensional image that can be processed by a CNN model, which can then distill
the most informative elements from the sequence of observations. This approach has the

1TikZ figure obtained from https://tikz.net/conv2d/.

48

https://tikz.net/conv2d/

3.1. TRADITIONAL DEEP LEARNING MODELS

A
Input

Convolution
Pooling

Feature Extraction Classification

Fully Connection

Output

Figure 3.3: The architecture of a typical CNN.

potential to uncover complex patterns in time series data, particularly in cases where
econometric methods struggle to capture nonlinear relationships and high-dimensional
structures. The CNN architecture’s ability to exploit the local structure in the data
through the use of convolutional filters can help identify meaningful patterns that could
be crucial for accurate forecasting.

Like MLP, CNNs offer several advantages for TSF, including handling multivariate
input and output data and learning complex, nonlinear relationships, but do not necessi-
tate direct input from lag observations. They can perform automatic feature extraction,
providing a more efficient way of learning representations for TSF tasks. This capability
of CNNs has shown to be effective in various time series classification tasks [41]–[44].

Recurrent Neural Networks (RNNs)

RNNs are neural networks designed to recognize patterns in data sequences, such as
text, genomes, and time series data. Unlike MLPs or CNNs, RNNs retain a form of
memory as they process inputs sequentially, allowing past information to influence the
current output, making them particularly well-suited for tasks where ordinal information
is important. This is achieved by introducing a feedback loop that allows information
to persist, shown in Fig. 3.4. This feedback loop enables RNNs to capture temporal
dependencies in the data, making them suitable for TSF tasks.

RNNs such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
networks are particularly suitable for TSF as they can explicitly handle the temporal order
of observations when learning a mapping function for the inputs over time to outputs. This
feature is not offered by other neural network architectures such as MLPs or CNNs. They
have proven highly effective in complex natural language processing tasks, such as neural
machine translation, where the model must learn the intricate interrelationships between
words within and across languages. This powerful capability can also be applied to TSF.
RNNs like LSTMs can automatically learn the temporal dependencies from the data,
making them suitable for problems with nonlinear relationships and complex temporal

49

3.1. TRADITIONAL DEEP LEARNING MODELS

A

	𝑥!

	ℎ!

A

	𝑥"

	ℎ#

A

	𝑥$

	ℎ"

	𝑥%

	ℎ%

⋯ AA

	𝑥%

	ℎ%

=

Figure 3.4: The fold and unfold architecture of a typical RNN.

dynamics.
Specifically, an RNN model is trained by being presented with one observation at a

time. It learns to determine which previous observations are relevant for the forecasting
task. As such, the model learns the mapping from inputs to outputs and which contextual
information from the input sequence is important for making accurate predictions. The
model can dynamically adjust this context as it processes each new observation in the
sequence.

Besides, LSTMs and GRUs can solve the problem of gradient vanishing and exploding,
which is a common problem in RNNs. This is achieved by introducing a mechanism called
gates that control the flow of information through the network. The gates are designed
to learn when information should be passed on and when it should be forgotten. This
allows the model to learn long-term dependencies in the data, which is crucial for accurate
forecasting. In addition, LSTMs and GRUs can be stacked to form a DL architecture,
which can further improve the model’s performance.

LSTMs and GRUs have been widely exploited either as the base architecture or as
an effective module in time series problems from different domains as reported in various
works of literature in recent years [2], [45]–[52]

Attention Mechanism

At the International Conference on Learning Representations (ICLR) in 2015, Bahdanau,
Cho, and Bengio [53] creatively leveraged the joint learning to align and translate and thus
proposed a new architecture called Attention Mechanism for neural translation tasks and
pushed the machine translation community a huge step forward. Fig. 3.5 demonstrates
this attention mechanism. It computes a weighted sum of input features based on their
relevance to the current context, effectively allowing the model to “pay attention” to
important parts and ignore less relevant ones.

The attention mechanism can also be a powerful tool used in DL to enhance the
performance of TSF models. It aims to provide context to the model by enabling it to
focus on relevant parts of the input sequence when making predictions. The technical
details of attention mechanism implementation can vary depending on the application
and network architecture. However, the core idea is to use learned attention weights to
dynamically adjust the importance of different input features for a given prediction. This
can allow for more effective complex time series modeling with nonlinear relationships
and dependencies.

50

3.1. TRADITIONAL DEEP LEARNING MODELS

𝑎! 𝑎! ⋯ ⋯ 𝑎"! 𝑎"! ⋯ ⋯ 𝑎#" 𝑎#"

𝑥! ⋯ 𝑥"! ⋯ 𝑥#"

𝑎$ 𝑎#"%!

𝑎! ⋯ 𝑎"! ⋯ 𝑎#"

𝑐!

𝑠! ⋯ 𝑠" ⋯ 𝑠##

𝑦'! ⋯ 𝑦'" ⋯ 𝑦'##

⋯ 𝑐" ⋯ 𝑐##

𝛼!,# 𝛼!,⋯ 𝛼!,!!	 𝛼!,⋯ 𝛼!,&"	

Decoder

Encoder

Figure 3.5: The architecture of the attention network.

The attention mechanism significantly enhances the performance of forecasting models,
primarily through improved accuracy, interpretability, flexibility, and an ability to han-
dle missing values. It enables models to concentrate on the most pertinent parts of the
input sequence, thereby increasing precision—especially for long time series, where essen-
tial features can be identified for accurate predictions. This mechanism also offers better
interpretability by allowing us to visualize the relevance of different input components via
attention weights, offering insights into the model’s decision-making. Furthermore, atten-
tion provides flexibility as it can be incorporated into various deep learning architectures
like CNNs and RNNs and can be applied to both univariate and multivariate time series
data. Lastly, it can handle missing data by assigning lower attention weights, ensuring
precise predictions despite data gaps.

Despite its advantages, the attention mechanism still presents several challenges, such
as computational cost, risk of overfitting, complex implementation, and interpretation
difficulties. Calculating attention weights for each input element in long time series can
be computationally demanding, increasing training time and memory requirements. Ad-
ditionally, incorrect implementation can lead to overfitting, where the model becomes too
specialized on specific parts of the input sequence, negatively impacting its predictive
accuracy on new data. The complexity of implementing the attention mechanism also
requires extra coding and modifications to the model architecture, necessitating more ex-
pertise. Lastly, despite enhancing model interpretability, the attention mechanism can
sometimes make it difficult to discern the relevance of certain features, especially those
assigned with low attention weights.

In conclusion, the attention mechanism is a powerful tool and has been proven to
significantly improve the performance of TSF models [54]–[56].

Hybrid Models

In recent years, hybrid models of econometric and DL methods have been proposed to im-
prove the performance of TSF models. These hybrid models combine different techniques,

51

3.1. TRADITIONAL DEEP LEARNING MODELS

such as exponential smoothing, ML, and state-space models, to produce accurate predic-
tions. As hybrid models rarely have the same architecture, we summarize several articles
that propose different hybrid methods and discuss their advantages and disadvantages.

• The Deep Factors for Forecasting method proposed by Wang et al. [57] is a hybrid
model that combines the benefits of classical time series models and deep neural
networks to produce probabilistic forecasts for large collections of similar and/or
dependent time series. The method uses a global-local framework that systemati-
cally combines deep neural networks and probabilistic models while also developing
an efficient and scalable inference algorithm for non-Gaussian likelihoods that gen-
erally applies to any normally distributed probabilistic models. This allows for
accurate forecasting while handling uncertainty through a local classical model.

• De O. Santos Júnior, De Oliveira, and De Mattos Neto [58] proposed a hybrid
system that combines the strengths of ARIMA and ANNs to improve forecasting
accuracy. The authors use an intelligent model that combines linear and nonlinear
techniques based on their respective forecasts. This hybrid system aims to find
the most suitable combination function for describing the relationship between the
forecasts of linear and nonlinear models. The authors present experimental results
for well-known time series datasets, demonstrating the effectiveness of their proposed
approach.

• Smyl [59] proposed ES-RNN, the winning solution of the M4 forecasting competi-
tion hosted by the International Institute of Forecasters in 2018. The innovation of
this method lies in its use of a dynamic computational graph neural network sys-
tem, which allows for the integration of exponential smoothing and LSTM networks
into a common framework. The method also employs a hierarchical structure that
combines a global part learned across many time series with a time series-specific
part and ensembles at multiple levels. ES-RNN has shown promising results in
competitions and real-world applications.

• Dudek, Pełka, and Smyl [60] proposed a hybrid residual dilated LSTM and exponen-
tial smoothing model for midterm electric load forecasting: This hybrid DL model
combines exponential smoothing, LSTM, and ensembling for midterm load fore-
casting. The model dynamically extracts the main components of each individual
time series and learns their representation. The multilayer LSTM is equipped with
dilated recurrent skip connections and a spatial shortcut path from lower layers to
better capture long-term seasonal relationships.

• One common assumption when training neural networks on time series data is that
the errors at different time steps are uncorrelated. However, due to the temporal
nature of the data, errors are often autocorrelated, which can lead to inaccurate max-
imum likelihood estimation. Sun, Lang, and Boning [61] proposed jointly learning
the autocorrelation coefficient with the model parameters to adjust for autocorre-
lated errors. By doing so, it aims to improve the accuracy of these models and
provide a more robust approach to modeling time series data with neural networks.

• The External Memory Augmented State Space Model (EMSSM) was invented by
Sun et al. [62]. It is a novel approach for TSF that addresses the limitations of

52

3.2. TRANSFORMERS FOR TIME SERIES FORECASTING

conventional State Space Models (SSMs). This method provides multi-step ahead
probabilistic forecasts with non-Markovian state transitions without accumulating
prediction errors like autoregressive models. The external memory system efficiently
utilizes weighted particles sampled by Variational Sequential Monte Carlo (VSMC)
and can handle long-term nonlinear temporal dependencies. The dynamic function
used in the EMSSM also contributes to lower Kullback–Leibler divergence than
other SSMs.

Hybrid methods for TSF offer improved accuracy and the ability to handle complex
patterns and dependencies. However, they may also be more complex and computationally
intensive than single methods and require strong structural assumptions.

Summary

To summarize, traditional DL models for TSF tasks are usually based on RNNs and
CNNs. At the same time, Attention Mechanism is a powerful tool proven to significantly
improve the performance of TSF models. Hybrid models of econometric and DL methods
have also been proposed to improve the performance of TSF models. These hybrid models
combine different techniques, such as exponential smoothing, ML, and state-space models,
to produce accurate predictions. Tab. 3.1 summarizes the advantages and disadvantages
of the above methods.

3.2 Transformers for Time Series Forecasting
This section presents the Transformer model and its variants dedicated to the TSF prob-
lem.

3.2.1 Transformer Basic

Since its inception in 2017, Transformer models have gained increasing popularity and
have been successfully applied in various fields, including machine translation, computer
vision, and text generation [63]–[66].

The Transformer was first proposed by Vaswani et al. [63]. It is based solely on the
attention mechanism. Transformer is a sequence-to-sequence model that uses attention
pooling to compute the representation of the input sequence. As a generalization of
the encoder-decoder architecture, it comprises an encoder and a decoder. The whole
architecture of the Transformer is shown in Fig. 3.6.

Transformer’s encoder and decoder are both composed of multiple layers of self-
attention and feed-forward neural networks. The encoder takes an input sequence and
maps it to a sequence of hidden representations, while the decoder takes the encoder
output and generates an output sequence. The self-attention mechanism is used to learn
the dependencies between the elements of the input and output sequences.

In traditional RNNs, the network is unrolled across time, and the state of the network
at each time step is fed into the next time step. This approach makes it difficult to
parallelize the training process and capture long-range dependencies between sequence
elements. The self-attention mechanism solves this problem by allowing the model to
attend to different input sequence elements with different weights.

53

3.2. TRANSFORMERS FOR TIME SERIES FORECASTING

Ta
bl

e
3.

1:
A

dv
an

ta
ge

s
an

d
D

is
ad

va
nt

ag
es

of
D

L
M

et
ho

ds
fo

r
T

SF
.

M
od

el
A

d
va

nt
ag

es
D

is
ad

va
nt

ag
es

M
LP

•
M

ul
ti

va
ri

at
e

da
ta

su
pp

or
t

•
C

ar
ef

ul
fe

at
ur

e
en

gi
ne

er
in

g
re

qu
ir

ed

•
N

on
lin

ea
r

re
la

ti
on

sh
ip

s
su

pp
or

t
•

Li
m

it
ed

ca
pa

bi
lit

y
to

ha
nd

le
te

m
po

ra
ld

ep
en

de
nc

ie
s

•
Fa

st
tr

ai
ni

ng
•

V
er

y
hi

gh
-d

im
en

si
on

al
da

ta
un

su
pp

or
te

d

C
N

N

•
M

ul
ti

va
ri

at
e

da
ta

su
pp

or
t

•
Li

m
it

ed
ab

ili
ty

in
lo

ng
-t

er
m

fo
re

ca
st

in
g

ta
sk

s

•
N

on
lin

ea
r

re
la

ti
on

sh
ip

s
su

pp
or

t
•

C
ar

ef
ul

tu
ni

ng
of

hy
pe

rp
ar

am
et

er
s

re
qu

ir
ed

•
A

ut
om

at
ic

fe
at

ur
e

ex
tr

ac
ti

on
•

Tr
an

sl
at

io
n

in
va

ri
an

t

R
N

N

•
N

at
iv

e
se

qu
en

ti
al

an
d

ti
m

e-
de

pe
nd

en
t

da
ta

su
pp

or
t

•
V

an
is

hi
ng

gr
ad

ie
nt

pr
ob

le
m

fo
r

lo
ng

se
ri

es

•
Lo

ng
-t

er
m

de
pe

nd
en

ci
es

su
pp

or
t

•
Se

ns
it

iv
e

to
th

e
in

it
ia

lv
al

ue
s

of
th

e
hi

dd
en

st
at

es

•
LS

T
M

s/
G

R
U

s
ca

n
pa

rt
ia

lly
he

lp
th

e
va

ni
sh

in
g

gr
ad

ie
nt

pr
ob

le
m
•

Sl
ow

tr
ai

ni
ng

sp
ee

d

A
tt

en
ti

on

•
Im

pr
ov

ed
ac

cu
ra

cy
•

C
om

pu
ta

ti
on

al
ly

ex
pe

ns
iv

e

•
B

et
te

r
in

te
rp

re
ta

bi
lit

y
•

Su
ffe

rs
fr

om
ov

er
fit

ti
ng

•
F
le

xi
bl

e
co

m
bi

na
ti

on
w

it
h

C
N

N
s

an
d

R
N

N
s

•
C

om
pl

ex
im

pl
em

en
ta

ti
on

•
R

ob
us

t
to

m
is

si
ng

va
lu

es
•

In
te

rp
re

ta
ti

on
ch

al
le

ng
es

H
yb

ri
d

•
C

om
bi

ne
m

ul
ti

pl
e

m
od

el
s

to
im

pr
ov

e
fo

re
ca

st
in

g
ac

cu
ra

cy
•

C
om

pl
ex

op
ti

m
iz

at
io

n
an

d
pa

ra
m

et
er

tu
ni

ng
re

qu
ir

ed

•
Su

pp
or

t
bo

th
lin

ea
r

an
d

no
nl

in
ea

r
pa

tt
er

ns
•

C
om

pu
ta

ti
on

al
ly

ex
pe

ns
iv

e

•
B

al
an

ce
be

tw
ee

n
ac

cu
ra

cy
an

d
in

te
rp

re
ta

bi
lit

y
•

D
iffi

cu
lt

to
in

te
rp

re
t

th
e

co
nt

ri
bu

ti
on

of
ea

ch
co

m
po

ne
nt

54

3.2. TRANSFORMERS FOR TIME SERIES FORECASTING

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Encoder

𝑄 𝐾 𝑉

𝐾

𝑉

Output
Embedding

Feed
Forward

Output
Probabilities

Decoder

𝑄 𝐾 𝑉

𝑄

×𝑁

×𝑁

Masked
Multi-Head
Attention

Add & Norm

Add & Norm

Add & Norm

Add & Norm

Multi-Head
Attention

Linear

Softmax

Positional
Encoding

Positional
Encoding

Inputs Outputs
(shifted right)

Figure 3.6: The architecture of Transformer.

The self-attention mechanism is based on attending to different parts of the input
sequence. Each element in the input sequence is associated with a query, a key, and a
value vector. The query vector is used to score the relevance of each key vector with
respect to the query, and the values are weighted by the scores and summed up to form
the output. This process is repeated for every element in the input sequence, resulting in
a weighted sum of all the values, which captures the relevant information for the query.
This procedure is illustrated in Fig. 3.7a.

Multi-head attention is another key element for Transformer. It is a variant of the
self-attention mechanism that allows the model to attend to multiple parts of the input
sequence simultaneously. In multi-head attention, the query, key, and value vectors are
projected into multiple subspaces, and the self-attention mechanism is applied indepen-
dently in each subspace. The results are then concatenated and linearly transformed,
resulting in the final output, as shown in Fig. 3.7b. This allows the model to capture

55

3.2. TRANSFORMERS FOR TIME SERIES FORECASTING

different aspects of the input sequence and attend to multiple parts simultaneously.

MatMul

Scale

Mask (opt.)

SoftMax

MatMul

𝑄 𝐾 𝑉

Scaled Dot-Product Attention

(a) Self-Attention.

Concat

𝑄

Linear

𝐾

Linear

𝑉

Linear

Scaled Dot-Product Attention

Linear

ℎ

Multi-Head Attention

(b) Multi-head attention.

Figure 3.7: Attention mechanism in Transformer.

Another critical component of the Transformer model is positional encoding. Unlike
recurrent neural networks, the Transformer does not explicitly encode the position of each
element in the sequence. Instead, positional encoding is added to the input embeddings
to provide the model with positional information. In the primitive version of Transformer,
the positional encoding is based on a set of sinusoidal functions of different frequencies
and is added to the input embeddings before they are passed through the self-attention
and feed-forward layers.

To conclude, Transformer leverages the attention mechanism solely, replacing the re-
current layers in the encoder-decoder architecture with multi-head attention. It is a
milestone in the field of sequence modeling and has been successfully applied in various
fields. In the later subsection, we will introduce Transformer models for TSF.

3.2.2 A gentle survey of Transformers for TSF tasks

The modeling ability of Transformers makes them naturally suitable for time series, which
are also a type of sequence data structure. However, time series have many character-
istics that are different from traditional sequence data. For example, time series often
exhibit autocorrelation or periodicity, and TSF tasks frequently involve predicting se-
quences with very long periods. These characteristics present new challenges for the
application of Transformers in TSF and have led to the development of a new generation
of Transformers specifically designed for time series tasks. In this subsection, we will
introduce the application of Transformers in TSF, with a focus on recent representative
works up to 2023.

56

3.2. TRANSFORMERS FOR TIME SERIES FORECASTING

Transformer-based Model

At the International Conference on Machine Learning (ICML) in 2020, Wu et al. [67]
proposed to apply a self-attention mechanism for the TSF problem. This is likely the
first formal publication to use Transformer structures in TSF. Its overall structure
directly adopts the encoder-decoder framework of Transformer, without much special
upgrading, and applies it to a specific scenario. However, this opens the door to the
application of Transformers in TSF.

Temporal Fusion Transformers

In 2020, Lim et al. [68]proposed a novel Transformer-based model for TSF called Tempo-
ral Fusion Transformers (TFT). This work uses a combination of LSTM and Trans-
former for TSF. The time series data is first input into the LSTM, which can extract
contextual information similar to CNN and serve as a Position Encoding, leveraging the
LSTM’s sequential modeling ability to replace the Position Embedding trained with the
Transformer model. For the input features, TFT also provides a detailed design, where a
feature selection module (an attention mechanism) is used to compute the importance of
each feature for the current time step. This importance is also used for visualizing and
analyzing the TSF results to see the importance of each feature at each time step for the
prediction.

Log-Sparse Transformer

Li et al. [69] published the Log-Sparse Transformer (LogTrans) at the Conference on
Neural Information Processing Systems (NeurIPS) 2020. This work is based on the
Transformer architecture and uses a sparse attention mechanism to reduce the
computational complexity of the model. The attention operation of the Transformer
is point-to-point, but contextual information is also important for time series data. Some-
times, the time series values of the two points are the same, but they are not useful as a
reference because there is a large difference in the shape of their surrounding sequence. On
the contrary, when the overall shape is very similar, even if the values of the two regions
are very different, the two regions have a greater reference value and should have increased
attention weights. This example illustrates that in time series problems, we cannot rely
solely on the attention mechanism between two points, as in NLP, but should also con-
sider the surrounding context information. In their work, the authors use a combination
of convolution and Transformer. The time series data is first input into a one-dimensional
convolutional layer, which extracts the context information of each time step. Then, the
multi-head attention mechanism learns the relationship between time steps. This ap-
proach allows attention to consider the value of each point and the surrounding context
information, which can establish connections between regions with similar shapes.

Adversarial Sparse Transformer

In 2020, Wu et al. [70] introduced the Adversarial Sparse Transformer (AST) by apply-
ing the concept of Generative Adversarial Networks (GANs) to the Sparse
Transformer architecture. While many point prediction models are limited in captur-
ing the randomness of time series data, AST is designed to address this issue by improving

57

3.2. TRANSFORMERS FOR TIME SERIES FORECASTING

the model’s ability to represent time series and predict multiple future steps at a higher
confidence level. This is achieved through adversarial training and an encoder-decoder
structure, which allows the model to better capture the sparsity of dependencies between
time series steps. Using a discriminator further enhances the sequence-level prediction
performance of the model.

State Space Decomposition Neural Network

In 2021, Lin, Koprinska, and Rana [71] introduced the State Space Decomposition Neural
Network (SSDNet), which combines the Transformer with state space models
(SSMs) to achieve a balance between model performance and interpretability.
SSDNet utilizes the Transformer architecture to learn temporal patterns and directly
estimate the parameters of an SSM. This allows the model to identify which parts of the
history are most important for prediction by utilizing a fixed-form SSM to provide trend
and seasonal components and an attention mechanism of the Transformer. As a result,
SSDNet can effectively capture the spatiotemporal characteristics of time series data while
providing transparent explanations of the model’s behavior, which is a promising approach
for TSF.

Informer

Informer is a transformer-based approach for long sequence TSF, optimized for efficiency,
proposed by Zhou et al. [72]. The paper was awarded the best paper at the Association for
the Advancement of Artificial Intelligence Conference on Artificial Intelligence (AAAI) in
2021. Transformer’s time complexity increases exponentially with the length of the input
sequence, which is problematic for long sequences. To address this, Informer introduces
ProbSparse Attention, which reduces computation by forming sparse attention only
between key and critical query pairs. By calculating the Kullback-Leibler divergence be-
tween the distribution of attention scores and a uniform distribution, Informer determines
the important queries, ignoring the unimportant ones, which significantly increases com-
putation efficiency and reduces the time complexity to O(N logN). In addition, Informer
introduces self-attention distilling by adding a convolution layer between every two
attention blocks to reduce sequence length and training cost. Informer leverages a gener-
ative inference on both the training and inferencing phase thanks to its generative style
decoder. It can thus predict multiple time steps at once, alleviating the issue of error
accumulation compared to traditional autoregressive methods.

Autoformer

Autoformer is another transformer model specifically designed for TSF introduced by Wu
et al. [73]. Rather than using the point-to-point correlation as the attention informa-
tion, Autoformer introduces a novel self-attention mechanism that incorporates
the autocorrelation information of the time series. It discovers the period-based de-
pendencies by calculating the series autocorrelation and aggregates similar sub-series by
time delay aggregation and thus can replace the self-attention seamlessly. Specifically,
the AutoCorrelation Mechanism calculates the period-based dependencies by calculat-
ing the series autocorrelation and leverages FFT and Wiener-Khinchin theorem for fast

58

3.2. TRANSFORMERS FOR TIME SERIES FORECASTING

O(N logN) computation. Then it selects the top k time series with the highest autocor-
relation and aggregates them by time delay aggregation. The aggregated time series is
then fed into the self-attention mechanism. By integrating the autocorrelation informa-
tion into the attention mechanism, the model is better equipped to capture the temporal
dependencies in the data. Autoformer also covers a Deep Decomposition Architecture,
which involves decomposing the input time series into trend and seasonal components.
This decomposition allows the model to separately capture the patterns and dependen-
cies present in each component, leading to a better understanding of the underlying time
series structure, thus solving the problem of intricate temporal pattern discovery.

Pyraformer

Liu et al. [74] proposed Pyraformer, a tree-structured Transformer for long-term TSF in
2022. Pyraformer can effectively describe both short and long temporal depen-
dencies with low time and space complexity. It uses a Coarser Scale Construction
Module (CSCM) to construct a multi-resolution C-ary tree at a coarser scale. A pyramid
attention module is designed to propagate messages across and within scales. As the
sequence length N increases, it can achieve theoretical O(N) complexity and a maximum
signal traversal path length of O(1). Pyraformer has practical applications in decision-
making and risk management based on accurate predictions of future events using time
series data.

Frequency Enhanced Decomposed Transformer

Zhou et al. [75] proposed FEDformer, a frequency-enhanced decomposed Transformer for
TSF in 2021. When using the regular Transformer for TSF, there is often a large gap
between the predicted and true data distribution, as Transformer predicts each time point
independently using self-attention, which may ignore the overall properties of the time
series. FEDformer addresses this issue by exploiting Fourier transform. The Fourier
transform module in FEDformer transforms the input time series to the frequency domain
and replaces the query, key, and value with the Fourier-transformed frequency domain
information to perform the attention operation. FEDformer also achieves a linear time
and space cost through low-rank approximation by selecting a subset of Fourier
components, which are small enough to avoid overfitting and big enough to preserve most
of the history information. FEDformer also composes a decomposition architecture to
capture the trend and seasonality of the time series as per Autoformer but with a more
complex moving average approach.

Non-stationary Transformer

The non-stationarity of time series is a common and challenging problem in the real world.
The main approach to addressing this issue is to perform some normalization techniques,
e.g., min-max normalization and standard normalization, to make the sample statistics
consistent across different time steps. However, this solution can harm Transformer mod-
els. Although the normalized sequence statistics are consistent, the process also causes
the loss of specific information in the data, resulting in a convergence of attention matrices

59

3.2. TRANSFORMERS FOR TIME SERIES FORECASTING

for different sequences, which is called over-stationarization. Liu et al. [76] proposed Non-
stationary Transformers at NeurIPS 2022 to address this issue. The proposed framework
involves two interdependent modules: Series Stationarization and De-stationary
Attention. Series Stationarization adopts a simple normalization strategy to unify the
key statistics of each series without extra parameters, while De-stationary Attention ap-
proximates the attention of unstationarized data and compensates for the inherent non-
stationarity of raw series. The proposed Non-stationary Transformers framework increases
the predictability while re-incorporating non-stationary information of raw series.

PatchTST

Nie et al. [77] presented a new TS forecasting and representation learning method based
on Transformer called PatchTST, transforming time series data into a patch form
similar to the Vision Transformer proposed by Dosovitskiy et al. [66], achieving
remarkable results. The core idea of the proposed PatchTST is twofold. Firstly, TSF
models usually input each time step into the model, which is inefficient when dealing
with long historical sequences and contains limited information per time step. PatchTST
adopts the Patching approach inspired by Vision Transformer and models time series
in patch form. The patching design retains local semantic information in the embed-
ding, reduces computation and memory usage of the attention maps quadratically given
the same look-back window, and allows the model to attend longer history. Secondly,
Channel-independence is utilized, where each variable in the MTS is mapped to a
separate embedding instead of combining multiple variables into one embedding. This
design allows each patch to have its own set of learnable parameters independent of other
patches. It reduces the number of parameters and computation complexity while still
capturing local semantic information and benefiting from longer look-back windows.

CrossFormer

Previous works on using the Transformer model for time series problems focused on how
to model the relationships between different time steps more effectively using the self-
attention mechanism. However, in the context of MTS, the relationships between vari-
ables are also crucial, as the meaning of each variable in the time series is different, and
each variable may align at different time steps. Zhang and Yan [78] proposes CrossFormer,
which converts the time series into patches, adds attention between variables, and in-
corporates a “router” mechanism to improve efficiency. The model includes three
main modules: Dimension-Segment-Wise Embedding, which converts the time series into
patch embeddings; Two-Stage Attention Layer, which applies attention across both the
time and variable dimensions; and Hierarchical Encoder-Decoder, which forms a hierarchi-
cal encoding and decoding structure using different patch sizes and partitioning schemes.
CrossFormer achieves state-of-the-art performance on various real-world datasets.

ETSformer

Woo et al. [79] proposed a novel time-series Transformer architecture called ETSformer.
The approach is inspired by the classical ETS method, which makes the architecture
more effective and efficient for long-term forecasting. ETSformer incorporates inductive

60

3.3. CONCLUSIONS

biases of time-series structures by performing a layer-wise level, growth, and seasonal de-
composition. By leveraging the high capacities of deep architectures and an effective resid-
ual learning scheme, ETSformer can extract a series of latent growth and seasonal patterns
and model their complex dependencies. It also introduces a novel Exponential Smoothing
Attention (ESA) and Frequency Attention (FA) to replace vanilla self-attention.

Scaleformer

Shabani et al. [80] proposed Scaleformer, a novel multi-scale framework for TSF problems.
Scaleformer introduces an iterative scale-refinement paradigm that can be adapted
to a variety of transformer-based architectures. To minimize distribution shifts between
scales and windows, Scaleformer also incorporates a cross-scale normalization on the
outputs of the Transformer. Scaleformer can use many state-of-the-art architectures as
backbones, resulting in decent performance improvement on several real-world datasets.

3.3 Conclusions
This chapter contains two main parts: a comprehensive introduction to the traditional DL
models and a gentle overview of the existing Transformer models for the TSF problem.

In the first part, we discussed the bottlenecks of the econometric and ML models for
the TSF problem. Then, we introduced several DL models dedicated to the TSF problem,
including the basic MLPs, CNNs, RNNs, and Attention Mechanism. We summarized their
advantages and disadvantages and discussed their applications to the TSF problem. We
also discussed several hybrid models combining econometric methods with the DL models
to improve the performance of TSF.

In the second part, we concisely revised the Transformer architecture. We then re-
viewed the recent advances in TSF using Transformer models, including 14 different
Transformer-based models. We discussed their improvements over the vanilla Transformer
as well as their precursors. This chapter provides a short comprehensive overview of the
Transformer model and its variants for TSF.

To sum up, this chapter not only gives a foundation of the DL but also provides a
comprehensive overview of the state-of-the-art DL models for the TSF problem. We hope
this chapter can help the readers to understand the DL models for the TSF problem and
inspire them to develop new DL models for the TSF problem.

In the following chapters, we present our contributions as four consecutive studies.
In Chapter4, we conduct a comprehensive comparison of the STL decomposition prior
to forecasting methods (decomposition & preprocessing). In Chapter 5, deep learning
multi-step forecasting strategies are introduced (forecasting strategies & deep models).
We propose deep learning Transformer-based forecasting with rank correlation function
and STL decomposition in Chapter 6 (Transformer & rank correlation & STL decomposi-
tion). Finally, Chapter 7 presents a prototype application for time series forecasting (web
application).

61

Chapter 4

STL decomposition prior to
econometric and ML models

Contents
4.1 Introduction . 63

4.2 Methods . 64

4.2.1 Benchmark Methods . 64

4.2.2 Decomposition Methods . 64

4.2.3 Econometric Methods . 65

4.2.4 Machine Learning Methods . 66

4.3 Experiments . 66

4.3.1 Dataset . 66

4.3.2 Pipeline for Machine Learning Methods 67

4.3.3 Pipeline for Econometric Methods 68

4.3.4 Implementation and Parameters Tuning 69

4.3.5 Evaluation Metrics . 69

4.4 Results and Discussions . 70

4.4.1 Results . 70

4.4.2 Discussions . 72

4.5 Conclusions . 73

In this chapter, we investigate the different aforementioned forecasting methods, combine
them with STL decomposition, and compare their performance. The forecasting methods
we consider are as follows:

• Three econometric methods: ARIMA, ETS, and Theta.

• Five frequently used machine learning methods: kNN, SVR, CART, RF, and GP.

We conduct our forecasting test on six horizons: 1, 6, 12, 18, and 24. Our results show
that, when applied to the monthly industrial M3-Competition dataset as a preprocessing

62

4.1. INTRODUCTION

step, STL decomposition can benefit forecasting using econometric methods but harms
the machine learning ones. Moreover, the STL-Theta combination method displays the
best forecasting results on four of the five forecasting horizons.

The rest of this chapter is organized as follows. In Sec. 4.1, we give a brief introduction
to the forecasting competition and this comparison study. Then, we present a concise
description of all the involved models and the decomposition methods in Sec. 4.2. Sec. 4.3
presents how we organized and conducted the experiments. In Sec. 4.4, we present the
comparison results and discussions based on these results. Sec. 4.5 gives the conclusion
of this comparative study. This chapter can also be found in the corresponding journal
version of the article [81].

4.1 Introduction
Since some forecasting methods can be more appropriate than others to certain scenarios,
comparing their performance becomes a natural way when selecting forecasting strategies.

Although forecasting comparisons can be found among ancient Greeks, forecasting
competitions have a relatively short history, with the first one traced back to 1974.
Nowadays, the famous forecasting competition is the M-Competitions. The first one, i.e.,
the M1-Competition, was held by Spyros Makridakis and Michèle Hibon back in 1982,
and four subsequent M-Competitions, namely M2–M4-Competitions, have been organized
since then. There are many interesting discussions and debates about these competitions
and their results during these years. Readers can find a brief yet thought-provoking
history of forecasting competitions in [34].

Over the last decade, Artificial Intelligence (AI) has gained significant prominence, es-
pecially in Computer Vision [82], natural language processing (NLP) [83], and autonomous
driving [84]. Convolutional Neural Networks (CNNs) have revolutionized the field of com-
puter vision [85]. Recurrent Neural Networks (RNNs) and Transformer models revolu-
tionized NLP fields, such as machine translation and speech recognition [63], [86], [87]. In
the field of time series, many machine learning methods such as support vector regression
(SVR), neural networks (NN), classification and regression tree (CART), and k-nearest
neighbor (kNN) were proven able to model and forecast time series as well [81], [88], [89].

There are some discussions on comparing the performance of different forecasting ap-
proaches. Ahmed et al. [90] performed an empirical comparison of eight machine learning
models over the 1045 monthly series involved in the M3-Competition, but only one-step-
ahead forecasting was considered. Makridakis, Spiliotis, and Assimakopoulos [91] did
some similar works, comparing econometric and machine learning methods, but without
any decomposition method being introduced as a preprocessing step. Using the M1-
Competition dataset, Theodosiou [92] compared a new STL-based method with some
common benchmarks but without combining STL with them, and only up to 18-month
forecasting was considered.

As the preprocessing step often plays an integral part in prediction tasks and substan-
tially impacts the results, we propose to conduct a new comparison work to identify its
benefit: (1) by exploring STL decomposition when using it as a preprocessing step for all
methods; and (2) by considering multiple forecasting horizons.

63

4.2. METHODS

4.2 Methods
Although there are many different variations of each model, we considered only the prim-
itive versions of each model in our experiments. As this study is inspired heavily by
the M3 and M4-Competitions, we kept the six benchmark methods used in these two
competitions by the organizer [93].

4.2.1 Benchmark Methods

Below is a list of descriptions of the benchmarks utilized in the M4-Competition.

• Naïve 1. Naïve 1 assumes future values are identical to the last observation.

• Naïve S. Naïve S assumes future values are identical to the values from the last
known period, which, in our case, is 12 months.

• Naïve 2. Naïve 2 is similar to Naïve 1, except the data are seasonally adjusted
by a conventional multiplicative decomposition if tested seasonal. We performed a
90% autocorrelation test at lag 12 for each series.

• Simple Exponential Smoothing (SES). SES forecasts future values as exponen-
tially decayed weighted averages of past observations.

• Holt. Holt’s linear trend method extends SES for data with a trend.

• Damped. The damped model dampens the trend in Holt’s method.

4.2.2 Decomposition Methods

Here, we redescribe briefly the two commonly used decomposition methods.

Canonical Decomposition

The canonical multiplicative decomposition algorithm for a series with a seasonal period
of s has four steps:

1. Compute the trend-cycle component T̂t using a simple MA smoothing.

2. Detrend the series: yt/T̂t.

3. Compute the seasonal component Ŝt by averaging the corresponding season’s de-
trended values.

4. Compute the remainder component R̂t: R̂t = yt/(T̂tŜt).

64

4.2. METHODS

STL Decomposition

STL decomposition consists of two recursive procedures: an inner loop and an outer loop.
The inner loop fits the trend and calculates the seasonal component. Every inner loop
consists of six steps in total:

1. Detrending. Calculate a detrended series yt − T
(k)
t . For the first pass, T (0)

t = 0.

2. Cycle-Subseries Smoothing. Use LOESS to smooth the subseries of values at each
position of the seasonal cycle. The result is marked as C

(k+1)
t .

3. Low-Pass Filtering of Smoothed Cycle-Subseries. This procedure consists of two
MA filters and a LOESS smoother. The result is marked as L

(k+1)
t .

4. Detrending of Smoothed Cycle-Subseries. S
(k+1)
t = C

(k+1)
t − L

(k+1)
t .

5. Deseasonalizing. yt − S
(k+1)
t .

6. Trend Smoothing. Use LOESS to smooth the deseasonalized series to get the trend
component of this iteration T

(k+1)
t .

If any anomaly is detected, an outer loop will be applied, and replace the LOESSs at
the second and sixth steps of the inner loop with the robust LOESS.

4.2.3 Econometric Methods

We select ARIMA, ETS, and Theta models as representatives of econometric methods.

• ARIMA. An ARIMA model assumes future values to be linear combinations of
past values and random errors, contributing to the AR and MA terms, respectively.
SARIMA (Seasonal ARIMA) is an extension of ARIMA that explicitly supports
time series data with a seasonal component. Once STL decomposition is applied,
SARIMA models degenerate into regular ARIMA models as STL handles the sea-
sonal part.

• ETS. The ETS models are a family of time series models with an underlying state
space model consisting of a level component, a trend component (T), a seasonal com-
ponent (S), and an error term (E). Forecasts produced using exponential smoothing
methods are weighted averages of past observations, with the weights decaying ex-
ponentially as the observations get older. After concatenating STL on the ETS
model, the full ETS model degenerates into Holt’s method as the seasonal equation
is handled by STL.

• Theta Method. The Theta method performed exceptionally well in the M3-
Competition and was used as a benchmark in the M4-Competition. The Theta
method is based on the concept of modifying the local curvature of the time series
through a coefficient θ, which is applied directly to the second difference of the data.

65

4.3. EXPERIMENTS

4.2.4 Machine Learning Methods

It is interesting to closely examine how machine learning methods perform in TSF tasks.
Using the embedding strategy to transform this task into a supervised learning prob-
lem [94], we can apply machine learning techniques to TSF tasks. The following briefly
introduces the machine learning methods used in this experiment.

• k-NN. k-NN is a non-parametric method used for classification and regression. In
both cases, the input consists of the k closest training examples in the feature space.
In k-NN regression, the output is the property value for the object. This value is
the average of the values of k nearest neighbors based on the Euclidean distances.

• SVR. SVM is a successful method that tries to find a separation hyperplane to
maximize the margin between two classes, while SVR seeks a hyperplane to minimize
the margin between the support vectors and the hyperplane.

• CART. CART is one of the most generally used machine learning methods and
can be used for classification and regression. CART dichotomizes each feature recur-
sively and divides the input space into several cells. CART computes the probability
distributions of the corresponding prediction in it.

• RF. RF is an ensemble learning algorithm based on the Decision Tree [95]. Sim-
ilar to CART, RF can be used for both classification and regression. It operates
by constructing many decision trees at training time and calculating the average
predictions from the individual trees.

• GP. A GP is a generalization of the Gaussian probability distribution [96]. It uses a
measure of homogeneity between points as a kernel function to predict an unknown
point’s value from the input training data. Its prediction results contain the value
of the point and the uncertainty information, i.e., its one-dimensional Gaussian
distribution [91].

4.3 Experiments
This section presents how we organized and performed our experiment.

4.3.1 Dataset

We selected 332 monthly series from the industry category, which contains the highest
number of points per series from the M3-Competition dataset.1 We set 84 as the length
of the historical data and tested five different forecast horizons, i.e., 1, 6, 12, 18, and 24
months. Thus, the total length required for an appropriate series is 108. The two series
N2011 (78 points) and N2118 (104 points), were thus removed from the original 334-series
dataset.

1Data retrieved from International Institute of Forecasters: https://forecasters.org/reso
urces/time-series-data/m3-competition/

66

https://forecasters.org/resources/time-series-data/m3-competition/
https://forecasters.org/resources/time-series-data/m3-competition/

4.3. EXPERIMENTS

4.3.2 Pipeline for Machine Learning Methods

Data Preprocessing

In our experiment, three preprocessing techniques were conducted on all the series:

1. Deseasonalizing: A 90% autocorrelation test at lag 12 is performed to decide
whether the series is seasonal. We perform a conventional multiplicative decompo-
sition or an STL decomposition if the series is seasonal and extract the seasonal
part.

2. Detrending: A one-order differencing is performed to eliminate the trend.

3. Scaling: A standardization step is applied to remove the mean and scale the features
to unit variance.

Supervised Learning Setting

A time series prediction problem can be transformed into a supervised learning task that
machine learning methods can do. A commonly used approach is to formulate a training
set by lagging and stacking the historical series several times.

Typically, for a one-step-ahead prediction problem, we can construct a training set
{X, Y } as follow:

X =

y1 y2 · · · yn

y2 y3 · · · yn+1

...
...

...
...

yN−n yN−n+1 · · · yN−1

 , Y =

yn+1

yn+2

...
yN

 ,

where N is the total length of the series, and n is the number of times we lag the series,
often referred to as the window length. Each row in X represents a training example,
while its label corresponds to Y ’s element with the same index.

In an h-step-ahead case, the training set evolves into:

X =

y1 y2 · · · yn

y2 y3 · · · yn+1

...
...

...
...

yN−n−h+1 yN−n−h+2 · · · yN−h

 , Y =

yn+1 yn+2 · · · yn+h

yn+2 yn+3 · · · yn+h+1

...
...

...
...

yN−h+1 yN−h+2 · · · yN

 .

This transformation is often referred to as the embedding technique in the R imple-
mentation [97]

Results Post-Processing

The post-processing part comprises the inverted operations of the three preprocessing
steps:

1. Rescaling: A rescaling step is performed by inverting the standardization opera-
tion.

67

4.3. EXPERIMENTS

2. Retrending: A cumulated summing is conducted to bring back the trend elimi-
nated by the first-order differencing.

3. Reseasonalizing: A reseasonalization step is executed to integrate the seasonal
component into the prediction. The first h points in the last season in the seasonal
component are selected where h is the forecast horizon, and when h > 12, data from
the last season are concatenated to provide a proper length.

Fig. 4.1 shows a scheme of the machine learning pipeline.

St
ar

t

O
ri

gi
na

lS
er

ie
s

D
es

ea
so

na
liz

in
g

D
et

re
nd

in
g

Sc
al

in
g

E
m

be
dd

in
g

M
L

M
od

el
in

g

R
es

ca
lin

g

R
et

re
nd

in
g

R
es

ea
so

na
liz

in
g

O
ut

pu
t

Se
ri

es

St
op

Figure 4.1: Flowchart of the machine learning pipeline.

4.3.3 Pipeline for Econometric Methods

econometric methods require no preprocessing or post-processing as the Machine Learning
and Deep Learning methods demand. However, the same deseasonalization and reseason-
alization steps are necessary for the STL-based methods.

In our experiment, we built some hybrid STL decomposition-based econometric meth-
ods. We performed an STL decomposition and constructed the ARIMA, ETS, and Theta
models upon the seasonally adjusted series to compute the point forecasts. It comprises
four procedures:

1. STL decomposition. Perform the STL decomposition to extract the underly-
ing trend, seasonal and residual components. Seasonality test is performed as per
ML/DL method in advance.

2. Deseasonalization. Compute the deseasonalized series by subtracting the seasonal
component. This step is also called seasonal adjustment.

3. Point forecasting. Construct the ARIMA, ETS, and Theta models on the sea-
sonally adjusted data and calculate the forecasting values.

4. Reseasonalization. Add the seasonal component back to the forecasting to calcu-
late the final forecasting results.

One effect of applying the STL decomposition on econometric methods is that it
cancels these econometric methods’ intrinsic seasonality handlers.

Fig. 4.2 is the scheme of the econometric methods pipeline.

68

4.3. EXPERIMENTS

St
ar

t

O
ri

gi
na

lS
er

ie
s

D
es

ea
so

na
liz

in
g

E
co

n
om

et
ri

c
M

od
el

in
g

R
es

ea
so

na
liz

in
g

O
ut

pu
t

Se
ri

es

St
op

Figure 4.2: Flowchart of the econometric methods pipeline.

4.3.4 Implementation and Parameters Tuning

Econometric Methods

All of the econometric methods, as well as their STL-based versions, were conducted using
the forecast-8.13 package [17] in R 4.0.2.

Machine Learning Methods

The machine learning methods and their STL-based versions were tested by exploit-
ing Python 3.8.5 with the help of sktime-0.4.2 [22], scikit-learn-0.23.2 [98], and
statsmodels-0.12.1 [15] libraries.

4.3.5 Evaluation Metrics

Three evaluation metrics were used in this experiment.
We used the symmetric Mean Absolute Percentage Error (sMAPE) [99]. It has the

following formula:

sMAPE =
2

h

h∑
t=1

|yt − ŷt|
|yt|+ |ŷt|

× 100%, (4.1)

where h is the forecasting horizon, yt is the actual values at time t, and ŷt is the forecast
produced by the model.

We also used the Mean Absolute Scaled Error (MASE) introduced by Rob Hynd-
man [100]:

MASE =
1

h

∑h
t=1 |yt − ŷt|

1
n−s

∑n
t=s+1 |yt − yt−s|

, (4.2)

where n is the number of observations, and s is the number of periods per season.
The Overall Weighted Average (OWA) w.r.t. Naïve 2 was also adopted [93]:

OWA =
1

2

(
sMAPEModel X

sMAPENaïve 2
+

MASEModel X

MASENaïve 2

)
. (4.3)

69

4.4. RESULTS AND DISCUSSIONS

4.4 Results and Discussions

4.4.1 Results

The results of our experimentation are presented in Tab. 4.1, Fig. 4.3–4.5, and the fol-
lowing contents.

Tab. 4.1 represents the forecast results of different methods on different forecast hori-
zons. Note that Naïve 2 was chosen as the reference method for the OWA indicator,
meaning that OWA equals 1, whatever the horizon value h. At first glance, in Tab. 4.1,
most of the econometric methods give better forecasting results w.r.t. naïve methods
(OWA < 1) than the machine learning methods (OWA > 1). This result confirms the
conclusion from the M3-Competition that sophisticated machine learning methods do not
assure a more accurate prediction than simple econometric methods.

This result becomes obvious in Fig. 4.3, showing OWA ≤ 0.910 performance results for
the three advanced econometric methods (ARIMA, ETS, and Theta) by comparison with
Fig. 4.4, showing OWA ≥ 0.914 performance results for the five machine learning methods.
Above all, Fig. 4.3 and Fig. 4.4 show the impact of STL decomposition as a preprocessing
step of econometric and ML methods on the forecasting performance results.

1 6 12 18 24
Forecast horizon

0.65

0.70

0.75

0.80

0.85

0.90

O
W

A

Model
ARIMA
STL-ARIMA
ETS
STL-ETS
Theta
STL-Theta

Figure 4.3: OWAs for STL decomposition on econometric models.

Significant improvement from STL decomposition was found for econometric methods.
Among all the tested STL-based methods, the STL-Theta method outperforms the other
methods on almost all forecast horizons. The STL-Theta method can even give a lower
OWA on a 24-month forecast horizon than the other methods on the 18-month one.

In Fig. 4.4, we can find that the SVR model gives the best result. No significant
improvement from STL preprocessing was detected.

Fig. 4.5 shows the mean and standard deviation of the gain brought by STL decom-
position calculated as OWA−OWASTL

OWA
. On average, STL improves the OWA of ARIMA

by 1.5%, ETS by 0.9%, and Theta by 5%, but it conducts a loss of OWA for machine
learning methods. It harms SVR by 2.3%, RF by 3.3%, GP by 2.3%, kNN by 2.2%, and

70

4.4. RESULTS AND DISCUSSIONS

Ta
bl

e
4.

1:
Fo

re
ca

st
in

g
re

su
lt

s
of

di
ffe

re
nt

m
et

ho
ds

on
di

ffe
re

nt
fo

re
ca

st
ho

ri
zo

ns
.

h
=

1
h

=
6

h
=

12
h

=
18

h
=

24

E
co

n
om

et
ri

c
sM

A
P

E
M

A
S
E

O
W

A
sM

A
P

E
M

A
S
E

O
W

A
sM

A
P

E
M

A
S
E

O
W

A
sM

A
P

E
M

A
S
E

O
W

A
sM

A
P

E
M

A
S
E

O
W

A

N
ai

ve
12

.5
36

1.
00

6
1.

07
1

16
.0

11
1.

28
0

1.
17

7
16

.2
38

1.
31

2
1.

15
2

17
.4

80
1.

39
5

1.
15

3
18

.0
44

1.
45

6
1.

14
3

sN
ai

ve
12

.4
64

0.
88

2
1.

00
2

12
.0

01
0.

87
4

0.
84

2
12

.7
26

0.
92

5
0.

85
7

14
.0

88
1.

03
3

0.
89

1
14

.6
89

1.
09

4
0.

89
4

N
ai

ve
2

11
.7

04
0.

93
9

1.
00

0
13

.8
13

1.
07

1
1.

00
0

14
.3

74
1.

11
8

1.
00

0
15

.4
31

1.
18

9
1.

00
0

16
.0

53
1.

25
4

1.
00

0
SE

S
9.

27
7

0.
72

3
0.

78
1

11
.3

86
0.

84
4

0.
80

6
12

.3
76

0.
93

1
0.

84
7

13
.6

40
1.

01
7

0.
87

0
14

.3
97

1.
09

2
0.

88
4

H
ol

t
9.

73
4

0.
74

1
0.

81
0

11
.6

69
0.

86
5

0.
82

6
13

.5
22

1.
00

4
0.

92
0

15
.7

10
1.

16
1

0.
99

7
17

.1
97

1.
29

3
1.

05
1

D
am

pe
d

9.
28

8
0.

72
0

0.
78

0
11

.3
88

0.
84

4
0.

80
6

12
.5

72
0.

94
2

0.
85

9
13

.9
85

1.
03

6
0.

88
9

14
.7

40
1.

11
0

0.
90

2

A
R

IM
A

8.
64

3
0.

62
3

0.
70

1
10

.0
37

0.
73

0
0.

70
4

11
.8

24
0.

87
3

0.
80

2
13

.5
81

1.
01

5
0.

86
7

14
.7

94
1.

12
7

0.
91

0
E

T
S

7.
80

5
0.

59
1

0.
64

8
9.

87
5

0.
71

6
0.

69
2

11
.7

18
0.

84
9

0.
78

7
13

.6
08

0.
98

7
0.

85
6

14
.7

51
1.

08
5

0.
89

2
T

he
ta

8.
64

5
0.

64
0

0.
71

0
10

.6
68

0.
74

9
0.

73
6

11
.8

62
0.

85
4

0.
79

4
13

.4
03

0.
96

2
0.

83
9

14
.3

99
1.

04
7

0.
86

6

ST
L-

A
R

IM
A

8.
24

5
0.

60
4

0.
67

4
9.

91
5

0.
71

7
0.

69
3

11
.7

55
0.

85
6

0.
79

2
13

.4
57

0.
99

3
0.

85
4

14
.4

81
1.

09
3

0.
88

7
ST

L-
E

T
S

7.
76

0
0.

56
9

0.
63

5
9.

88
2

0.
70

4
0.

68
6

11
.7

28
0.

84
5

0.
78

6
13

.4
33

0.
96

9
0.

84
3

14
.5

52
1.

07
4

0.
88

2
ST

L-
T

he
ta

7.
96

3
0.

58
0

0.
64

9
9.

50
2

0.
67

8
0.

66
0

11
.1

77
0.

80
1

0.
74

7
12

.8
17

0.
92

1
0.

80
3

13
.8

91
1.

01
1

0.
83

6

h
=

1
h

=
6

h
=

12
h

=
18

h
=

24

M
L

&
D

L
sM

A
P

E
M

A
S
E

O
W

A
sM

A
P

E
M

A
S
E

O
W

A
sM

A
P

E
M

A
S
E

O
W

A
sM

A
P

E
M

A
S
E

O
W

A
sM

A
P

E
M

A
S
E

O
W

A

k
N

N
13

.6
36

0.
96

5
1.

09
6

16
.0

70
1.

16
6

1.
12

6
17

.7
81

1.
32

6
1.

21
2

20
.4

21
1.

49
7

1.
29

1
21

.7
41

1.
61

0
1.

31
9

SV
R

11
.2

53
0.

85
5

0.
93

6
12

.7
32

0.
97

1
0.

91
4

14
.7

12
1.

11
6

1.
01

1
17

.4
85

1.
28

4
1.

10
7

19
.5

26
1.

42
9

1.
17

8
C

A
R
T

14
.0

80
1.

02
5

1.
14

7
19

.0
81

1.
37

7
1.

33
4

25
.4

90
1.

93
0

1.
75

0
30

.9
34

2.
31

4
1.

97
5

35
.9

56
2.

59
6

2.
15

5
R

F
11

.7
56

0.
89

8
0.

98
0

13
.6

68
1.

02
7

0.
97

4
15

.4
32

1.
18

6
1.

06
7

17
.8

31
1.

36
9

1.
15

3
19

.6
92

1.
49

6
1.

21
0

G
P

12
.5

40
0.

97
2

1.
05

3
14

.2
68

1.
09

3
1.

02
7

15
.5

28
1.

19
5

1.
07

5
17

.3
95

1.
31

3
1.

11
6

18
.7

20
1.

41
8

1.
14

8

ST
L-
k
N

N
15

.3
18

1.
07

7
1.

22
8

18
.3

59
1.

39
0

1.
31

3
17

.9
80

1.
30

6
1.

21
0

22
.5

13
1.

69
8

1.
44

4
22

.1
54

1.
61

0
1.

33
2

ST
L-

SV
R

12
.9

78
1.

00
6

1.
09

0
15

.2
85

1.
22

5
1.

12
5

14
.9

19
1.

10
9

1.
01

5
19

.3
38

1.
48

4
1.

25
1

19
.5

89
1.

41
0

1.
17

2
ST

L-
C

A
R
T

15
.8

20
1.

19
1

1.
31

0
21

.7
15

1.
66

0
1.

56
1

25
.1

57
1.

86
2

1.
70

8
32

.2
85

2.
44

6
2.

07
5

35
.7

15
2.

53
7

2.
12

4
ST

L-
R

F
13

.6
67

1.
05

4
1.

14
5

16
.4

01
1.

28
9

1.
19

5
15

.8
80

1.
17

7
1.

07
9

20
.2

37
1.

58
1

1.
32

1
19

.9
47

1.
46

5
1.

20
5

ST
L-

G
P

14
.1

63
1.

12
0

1.
20

1
16

.9
50

1.
35

1
1.

24
4

15
.7

82
1.

18
7

1.
08

0
19

.6
24

1.
52

6
1.

27
8

18
.9

74
1.

40
8

1.
15

2

71

4.4. RESULTS AND DISCUSSIONS

1 6 12 18 24
Forecast horizon

1.0

1.2

1.4

1.6

1.8

2.0

2.2
O

W
A

Model
SVR
STL-SVR
RF
STL-RF
GP
STL-GP
KNN
STL-KNN
CART
STL-CART

Figure 4.4: OWAs for STL decomposition on machine learning models.

CART by 1.1%.

ARIMA ETS Theta SVR RF GP KNN CART
0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

G
ai

n

Figure 4.5: Boxplot of OWA gain from STL for each method.

4.4.2 Discussions

It is interesting to note from the results in Fig. 4.5 that CART performs the worst among
all these methods, which is easy to understand as CART is a single forecaster. Its ensemble
method Random Forest performs much better in terms of the precision of forecasting. At
the same time, it consumes the most time.

The initial objective of this study was to determine whether STL decomposition can
be helpful as a preprocessing step for TSF methods. Our results confirm using STL de-

72

4.5. CONCLUSIONS

composition as a preprocessing method can effectively improve the econometric methods’
performance, which is consistent with [92] using M1-Competition data, but, for machine
learning methods, it can be harmful.

A possible explanation for this might be extracting the seasonal information from the
series can affect the features to be modeled. For econometric models, their intrinsic ability
to handle the seasonality might be worse than the STL decomposition. For the machine
learning models, it could be easier to model seasonal data. Further research is required
to confirm this hypothesis.

4.5 Conclusions
The present study in this chapter was designed to investigate the effect of using STL
decomposition as a preprocessing step on different forecasting strategies. The results
show some vast differences between these methods. Among all tested models, the STL
decomposition-based Theta method is the best one. In the meantime, the STL decom-
position can benefit the econometric methods by providing a more robust decomposition
procedure than their intrinsic mechanism. The machine learning methods tested in this
experiment failed to outperform most econometric methods but still have some potential
for improvement, e.g., combined with the econometric methods. More research is required
in the future.

73

Chapter 5

Deep learning with multi-step
forecasting strategies

Contents
5.1 Introduction . 75

5.2 Methods . 75

5.2.1 Multi-step Forecasting Strategies 75

5.2.2 Deep Learning Models . 77

5.3 Experiment . 84

5.3.1 Datasets . 84

5.3.2 Parameter Settings and Evaluation Metric 85

5.4 Results and Discussions . 86

5.5 Conclusions . 90

Multivariate time series forecasting problem has attracted enormous research in recent
years, and many deep learning models have been proposed and claimed to be effective in
different tasks. We find that many of these models were tested in a simple one-step-ahead
strategy, which does not apply to real scenarios requiring multi-step forecasting.

In this chapter, we investigate the performance of the three DL models which are
known to be the milestones for the TSF problem (i.e., DA-RNN, LSTNet, and TPA-
LSTM), for the MTSF problem, under five forecasting strategies for multi-step forecasting,
namely, One-Step-Ahead, Recursive, Direct, MIMO, and MISMO strategies.

We conducted our experiments on six datasets, whose statistical nature varies in dif-
ferent aspects, with four forecasting horizons: 3, 6, 12, and 24. They are NASDAQ 100
Stock Data, Beijing PM2.5 Data, Electricity, Exchange Rate, Solar Energy, and Traffic.

The rest of this chapter is organized as follows. In Sec. 5.1, we give a simple introduc-
tion to this investigation. In Sec. 5.2, we present a concise description of all the involved
deep learning models and the forecasting strategies. Sec. 5.3 presents how we organized
and conducted the experiments. We present the comparison results and discussions based
on these results in Sec. 5.4. Sec. 5.5 gives the conclusion. This chapter can also be found
in the corresponding conference version of the paper [101].

74

5.1. INTRODUCTION

5.1 Introduction
Recall that there are three crucial DL models in the field of MTS forecasting, i.e., Dual-
stage Attention-based Recurrent Neural Network (DA-RNN) [54] for introducing atten-
tion mechanism into MTS analysis for the first time, Long- and Short-term Time-series
network (LSTNet) [55] for combining CNN and RNN for MTS data, and Temporal Pat-
tern Attention Long Short-Term Memory (TPA-LSTM) [56] for introducing the Tem-
poral Attention Pattern concept for selecting relevant variables.

Nevertheless, although multi-step forecasting was claimed to be conducted in their
original papers, only a one-step-ahead strategy was actually applied according to their
descriptions for problem formulation. In this strategy, the authors generated a single-step-
ahead forecast and fed the model with the new actual data to generate the following step.
This strategy is intuitive but can only apply to limited cases where multi-step forecasting
is not required.

For multi-step forecasting in real life where we do not possess future values, the Re-
cursive and the Multi-Input Multi-Output (MIMO) strategies were often considered, and
several machine learning models were proven to be applicable with these strategies to
many tasks [102], [103]. To verify the applicability of deep learning models on multi-step
tasks, we conducted several experiments in which we:

1. Implemented these three models using multi-step forecasting strategies.

2. Evaluated and compared their performance over different horizons.

3. Tested their applicability for multi-step forecasting.

5.2 Methods
This section reviews the previously mentioned multi-step forecasting strategies and deep
learning models.

5.2.1 Multi-step Forecasting Strategies

A TSF problem can be transformed into a supervised learning task that ML/DL methods
can do. A commonly used approach is to formulate a training set by lagging and stacking
the historical series several times.

For a one-step forecasting problem, we can construct a training set {X, Y } of shape
[(N −n), n] and [(N −n), 1] where N is the total length of the series, and n is the number
of times we lag the series, often named window length:

X =

y1 y2 · · · yn

y2 y3 · · · yn+1

...
...

...
...

yN−n yN−n+1 · · · yN−1

 , Y =

yn+1

yn+2

...
yN

 , (5.1)

where each row in X represents a training example, while its target corresponds to the
element in the same row in Y .

75

5.2. METHODS

Nonetheless, as Y is a vector, (5.1) only describes the strategy for one-step-ahead
forecasting. Four strategies extending the framework to tackle the multi-step forecasting
problem are discussed in the following content.

Recursive

In the Recursive strategy [102], a single model f is trained and used recursively to generate
multi-step forecasting by taking the predicted values as the input for future time steps.

yt+1 = f(yt, yt−1, ..., yt−n+1) + wt+1,

with t ∈ {n, n+ 1, ..., N − 1} and wt+1 is a noise term.

Direct

In the Direct strategy [104], H models fh are trained independently:

yt+h = fh(yt, yt−1, ..., yt−n+1) + wt+h,

with t ∈ {n, n+1, ..., N−H} and h ∈ {1, 2, ..., H} where H is the forecast horizon. Every
model outputs a prediction of one value. The predictions from the H models are then
concatenated to form an H-step forecasting.

The Direct strategy has no accumulated error but requires a long computational time
due to enormous models to learn. Moreover, it requires more complex models than the
Recursive strategy to model the dependency between two distant points [94].

Multi-Input Multi-Output (MIMO)

The Recursive strategy is intuitive but suffers from accumulated errors. The MIMO
strategy [103] was proposed to alleviate this problem.

The MIMO strategy learns a single multiple output model F :

[yt+H , yt+H−1, ..., yt+1] = F (yt, yt−1, ..., yt−n+1) +w,

with t ∈ {n, n + 1, ..., N −H}. F : Rn 7→ RH is a vector-valued function and w ∈ RH is
a noise vector.

The MIMO strategy extends (5.1) into the following format:

X =

y1 y2 · · · yn

y2 y3 · · · yn+1

...
...

...
...

yN−n−H+1 yN−n−H+2 · · · yN−H

 , Y =

yn+1 yn+2 · · · yn+H

yn+2 yn+3 · · · yn+H+1

...
...

...
...

yN−H+1 yN−H+2 · · · yN

 .

The rationale of the MIMO strategy is that it outputs all future values in one vector
during the forecasting stage. Meanwhile, it models the dependency between the values
that characterizes the time series [94].

76

5.2. METHODS

Multi-Input Several Multi-Output (MISMO)

Another multiple-output strategy is called MISMO [105]. It is a trade-off between Direct
and MIMO. It can be described in the following equation:

[yt+m×s, yt+m×s−1, ..., yt+(m−1)×s+1] = Fm(yt, yt−1, ..., yt−n+1) +wm,

with m ∈ {1, 2, ...,M}, Fm : Rn 7→ Rs, and wm ∈ Rs. MISMO learns an H-step forecast
with M MIMO models (M = H

s
), each model outputs an s-step forecast (s ∈ {1, 2, ..., H}).

During the forecasting stage, the M forecasting of s values are concatenated to form the
final results.

A MISMO model can boil down to Direct or MIMO model:

• If s = 1, MISMO = Direct.

• If s = H, MISMO = MIMO.

This provides a convenient trade-off between controlling the dependencies among fu-
ture values and preserving the flexibility of the predictor [94].

5.2.2 Deep Learning Models

In this section, we present the three deep learning models previously mentioned.

DA-RNN

DA-RNN was proposed by Qin et al. [54] at the International Joint Conference on Artificial
Intelligence (IJCAI) in 2017. It is a sequence-to-sequence model [87] combined with the
attention mechanism.

Unlike the usual attention models for natural language processing, which include the
attention mechanism only at the decoder stage, DA-RNN includes a dual attention mech-
anism at both the encoder and decoder stages. Fig. 5.1 and Fig. 5.2 illustrate the two
attention mechanisms inside DA-RNN.

As multivariate time series are taken into consideration, in DA-RNN’s paper, authors
call exogenous series driving series and series to be predicted are referred to as target
series.

Input Attention Mechanism As shown in Fig. 5.1, DA-RNN starts by treating dif-
ferent time series rather than time steps. It reads in n driving series of length T , i.e.,
X = {x1,x2, ...,xn}⊤ = {x1,x2, ...,xT} ∈ Rn×T , with an LSTM network in favor of its
benefit of handling the vanishing gradient problem and better capturing the long-term
dependencies of time series. The target series is denoted by {y1, y2, ..., yT−1} with yt ∈ R.
The prediction is thus ŷT .

Inside the LSTM layer, an Input Attention Layer calculates the importance of the
k-th input series as:

ekt = v⊤
e tanh(We[ht−1, st−1] +Uex

k), 1 ≤ k ≤ n,

77

5.2. METHODS

x!

x"

⋮

x#

h$%!

𝑒$!

𝑒$"

⋮

𝑒$#

𝛼$!

𝛼$"

⋮

𝛼$#

𝑥$!

𝑥$"

𝑥$#
𝛼$# ' 𝑥$#

⋮

𝛼$" ' 𝑥$"

𝛼$! ' 𝑥$!

x($

Driving series
of length 𝑇

𝑇

Input
attention layer Softmax New input at

time 𝑡

Input
Attn⋮

Figure 5.1: DA-RNN’s Input Attention Mechanism.

where ve ∈ RT , We ∈ RT×2m and Ue ∈ RT×T are parameters to learn. ht−1, st−1 ∈ Rm

are respectively the encoder hidden and cell states in the m-unit LSTM.
Attention weights are then calculated by applying a softmax function on the impor-

tance ekt :

αk
t = softmax

(
ekt
)
=

exp(ekt)∑n
i=1 exp(e

i
t)
.

Then, the driving series with relevant ones attended are extracted:

x̃t = (α1
tx

1
t , α

2
tx

2
t , ..., α

n
t x

n
t)

⊤.

Temporal Attention Mechanism DA-RNN cooperates with another attention layer
called Temporal Attention Mechanism as shown in Fig. 5.2 to automatically select relevant
encoder hidden states across all time steps from the encoder output.

Specifically, the temporal attention mechanism contains two LSTMs. The first LSTM
serves inside the encoder as f1(·). The relevant driving series is passed consecutively to
update the hidden state in this LSTM layer:

ht = f1(ht−1, x̃t).

Then a Temporal Attention Layer calculates the importance of the i-th time step:

lit = v⊤
d tanh(Wd[dt−1, s

′
t−1] +Udhi), 1 ≤ i ≤ T,

where vd ∈ Rm, Wd ∈ Rm×2p and Ud ∈ Rm×m are parameters to learn. dt−1, s
′
t−1 ∈ Rp

are respectively the decoder hidden and cell states in the p-unit LSTM. The attention
weight βi

t is then calculated by:

βi
t = softmax

(
lit
)
=

exp(lit)∑T
j=1 exp(l

j
t)
.

78

5.2. METHODS

x"!

x""

x"#

LSTM

Temp
Attn

⋮

⋮

⋮

LSTM

⋮

LSTM

d"$!

h!

h"

h#

h!
h"$!

h"
h#$!

𝑙"!

𝑙""

𝑙"#

⋮

⋮

𝛽"!

𝛽""

𝛽"#

⋮

⋮

h!

h"

h#

c"$!

c!

c#$!

LSTM

⋮

LSTM

⋮

LSTM

d%
d"$!

d"
d#$!

𝑦"$!

𝑦!

𝑦#$!

𝑦*#
Encoder Temporal

attention layer Softmax Decoder

Figure 5.2: DA-RNN’s Temporal Attention Mechanism.

Since βi
t measures the importance of the i-th encoded hidden state hi for the final pre-

diction, the context vector ct ∈ Rm is then calculated as a weighted sum of {h1,h2, ...,hT}:

ct =
T∑
i=1

βi
thi.

The context vector should then be passed into an RNN by which the decoder’s hidden
state is calculated. In DA-RNN, this procedure is separated into two steps.

Firstly, the context vector and the target series are concatenated and mapped to the
size of the decoder input ỹt−1:

ỹt−1 = w̃⊤[yt−1, ct−1] + b̃,

where w̃ ∈ Rm+1 and b̃ ∈ R are parameters to learn.
Secondly, the decoder input ỹt−1 is employed to update the decoder hidden state dt:

dt = f2(dt−1, ỹt−1),

where f2(·) is the other LSTM.
Once the current decoder’s hidden state is computed, the model can output the final

prediction. In DA-RNN, two linear functions are exploited to calculate ŷT :

ŷT = v⊤
y (Wy[dT , ct] + bw) + bv,

where vy ∈ Rp, Wy ∈ Rp×(p+m), bw ∈ Rp, and bv ∈ R are parameters to learn.
To summarize, DA-RNN includes two attention mechanisms at both the encoder and

the decoder phases. The input attention mechanism measures the importance of the
k-th input series at time t, and the temporal attention layer measures the importance

79

5.2. METHODS

of the i-th hidden state from the encoder output. This dual-stage attention mechanism
enables the model to capture the interdependencies among the relevant series, as well as
the long-term dependencies at the same time. Although DA-RNN was initially designed
for forecasting one target time series, it is easy to extend it for multiple target series by
simply substituting yt−1 and ỹt−1 with their multidimensional versions yt−1 and ỹt−1.

LSTNet

*

⋮ ⋮

⋮

Autoregressive

Prediction

Linear
Bypass

Ti
m

e

Multivariate Time Series Convolutional Layer Recurrent and Recurrent-skip Layer Fully Connected and Point-Wise Sum Output

Figure 5.3: Graphical illustration of LSTNet.

LSTNet has attracted much attention since its first appearance at the International
ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
in 2018, proposed by Lai et al. [55]. LSTNet is not under an encoder-decoder structure,
but by combining CNN and RNN, LSTNet generates relatively good results for MTS data.
Unlike DA-RNN, LSTNet does not distinguish the driving and target series. It generates
forecasting for all series entries.

In LSTNet, the n-dimensional MTS of length T is noted as X = {x1,x2, ...,xT} where
xt ∈ Rn. The object for an h-step forecasting is thus {xT+1,xT+2, ...,xT+h}. The input
matrix at time t in a w-length window is formulated as It = {xt−w+1,xt−w+2, ...,xt, } ∈
Rn×w.

The author designed four essential components inside LSTNet to ensure its forecasting
effectiveness.

Convolutional Layer The first layer of LSTNet is a 1D convolutional layer of dc ker-
nels. Each convolutional kernel is of size ω×n where ω is the kernel size, and n represents
the dimension of the MTS data. The k-th kernel with ReLU activation function convolves

80

5.2. METHODS

through the input matrix It and generates:

hC
k = ReLU(Wk ⊛ It + bk),

where ⊛ is the convolution operation and Wk and bk are parameters to learn. The whole
output matrix of the convolutional layer HC is of size dC × T . In practice, this 1D
convolutional layer can be implemented with either a 1D or a 2D convolutional function
with the proper kernel size, padding, and stride parameter.

After the convolution, the output matrix is passed into two recurrent layers.

Recurrent Layer The first recurrent layer is a regular Gated Recurrent Unit (GRU) [106]
layer but with a ReLU activation function for each neuron. It is similar to LSTM but
simpler, where the hidden state is computed as:

Reset gate rt = σ(Wr[ht−1, xt] + br), (5.2)
Update gate ut = σ(Wu[ht−1, xt] + bu), (5.3)

New gate nt = ReLU(Wxnxt + rt ⊙ (Whnht−1) + bn), (5.4)
Hidden state ht = (1− ut)⊙ ht−1 + ut ⊙ nt, (5.5)

where ⊙ is the Hadamard product, Wr, Wu, Wxn, Whn, br, bu, and bn are weights and
biases to learn. The final output of this recurrent layer is denoted by hR

t .

Recurrent-skip Layer The second recurrent layer is an elaborate Recurrent-skip Com-
ponent. It is designed to address the vanishing gradient problem for very long-term se-
quences and also performs an alignment for series seasonality.

The recurrent-skip component is developed with temporal skip connections to extend
the span of the information flow. It adds skip-links from the current hidden states to the
hidden states in adjacent periods.

Reset gate rt = σ(Wr[ht−p, xt] + br),

Update gate ut = σ(Wu[ht−p, xt] + bu),

New gate nt = ReLU(Wxnxt + rt ⊙ (Whnht−p) + bn),

Hidden state ht = (1− ut)⊙ ht−p + ut ⊙ nt,

where parameters share the same notations with those in (5.2)-(5.5), they are different
weights and biases. ht−p is the hidden state in the adjacent period of p and p is thus the
number of hidden cells skipped through. p’s value is easy to determine for series with a
simple and clear seasonality, e.g., 12 for monthly data and 24 for hourly data.

In practice, this recurrent-skip layer is a standard GRU layer rather than an explicitly
redesigned one. The input of this layer is the output of the convolutional layer, the same as
the previous recurrent layer, but rearranged to have a shape of p×np for each dimension,
where np is the number of seasons in one input window. Every entry in the input matrix
represents values at the same position in different periods.

In this way, skip-links allow LSTNet to look at the information in adjacent periods
and thus enable the information to flow inside the RNN.

81

5.2. METHODS

After the Recurrent and Recurrent-skip layers, the computation results are bundled
by a fully connected layer. The Recurrent-skip layer output is hS

i where i ∈ [0, p − 1].
The output of the fully connected layer is thus:

hD
t = WRhR

t +

p−1∑
i=0

W S
t h

S
t−i + b,

where WR, W S
t , and b are parameters to learn. hD

t is the output of the upper part of the
neural network in Fig. 5.3 at time t.

Autoregressive Layer To address the scale-changing problem, where the output scale
does not vary with the input, the author adds an autoregressive layer to insert linearity
into the model. The autoregressive layer is implemented by another fully connected layer.
The output of the i-th series is computed by:

hL
t,i =

qar−1∑
k=0

W ar
k xt−k,i + bar,

where W ar
k ∈ Rqar and bar ∈ Rn are parameters to learn and shared by all dimensions. qar

is the input window length.
The final forecasting of LSTNet at time step t is an integration of the neural network

and the autoregressive layer:
X̂t = hD

t + hL
t .

To summarize, LSTNet leverages CNN and RNN for the MTSF problem. Firstly,
LSTNet convolves on the preprocessed series to capture the interdependencies among
multivariate series. Then, a GRU is stacked to model the long-term dependencies. An
elaborate Recurrent-Skip component is devised to address the gradient vanishing problem
for very long-term sequences, which allows the neurons to look at the hidden state in
adjacent periods. A fully connected layer then integrates the outputs of the Recurrent
layer and the Recurrent-skip layer. The authors also adopt an autoregressive component
to deal with the violate scale changing in the series.

TPA-LSTM

Shih, Sun, and Lee [56] proposed TPA-LSTM in 2019. It ameliorates MTS forecasting by
leveraging CNN, RNN, and an attention mechanism and focusing on different time steps
for different time series, which contributes to a different idea from the aforementioned
DA-RNN and LSTNet. TPA-LSTM has four different layers, as shown in Fig. 5.4.

Recurrent Layer The first component in TPA-LSTM is an LSTM layer that extracts
the hidden state matrix. Given an n-dimensional MTS X = {x1,x2, ...,xT} where xt ∈
Rn, an LSTM layer f(·) with m hidden neurons calculates the hidden and cell states at
time step t by:

ht, ct = f(ht−1, ct−1,xt),

where ht, ct ∈ Rm. Given the historical hidden state matrix H = {h1, h2, ..., ht−1} ∈
Rm×(t−1), the LSTM layer generates the hidden state vector ht at time step t. Once the

82

5.2. METHODS

ℎ!"#$%ℎ!"# ℎ!"%

ℎ!

𝐻%,%' 𝐻%,(' ⋯ 𝐻%,)'

⋮
Scoring
Function

	𝛼%

	𝛼(

	𝛼*

⋮

𝑣!

ℎ!

ℎ!+

𝐻(,%' 𝐻(,(' ⋯ 𝐻(,)'

𝐻*,%' 𝐻*,(' ⋯ 𝐻*,)'

Time

Figure 5.4: Graphical illustration of TPA-LSTM.

hidden state matrix H is acquired by the recurrent layer, it is passed into the following
convolutional layer.

Convolutional Layer A CNN layer convolves its kernels on the row vectors of H to
enhance the learning ability by detecting temporal patterns inside each series. Specifically,
k kernels Ci of size 1 × w are exploited, where w is the sliding window length. The i-th
row of the convolutional results matrix generated by the j-th kernel is formularized as:

HC
i,j =

w∑
l=1

Hi,(t−w−1+l) ⊛ Cj,l, 1 ≤ i ≤ m,

where ⊛ denotes the convolution operation and HC ∈ Rn×k is the convolutional result. It
should be noted that the convolutional layer only operates on the historical hidden state
matrix H = {h1, h2, ..., ht−1} ∈ Rm×(t−1). The current hidden state ht is not involved.
Every row in HC represents the temporal pattern of the corresponding series.

Attention Layer The scoring function to measure the relevance in Fig. 5.4 is formula-
rized as g : Rk × Rm 7→ R:

g(Hc
i , ht) = (HC

i)
⊤Waht,

where Hc
i ∈ Rk is the i-th row vector of Hc and Wa ∈ Rk×m is the parameter to learn.

This step includes the current hidden state ht ∈ Rm calculated by the recurrent layer.
The attention weights αi is then calculate by:

αi = σ(g(HC
i , ht)).

Note that here the author used the Sigmoid function instead of the Softmax to calculate
the attention weights to benefit from letting more variables participate in forecasting. But
this turns out to be no significant improvement in their ablation study, notably for the
non-polyphonic time series datasets.

83

5.3. EXPERIMENT

Once the attention weights are calculated, the row vectors of Hc are weighted to obtain
the context vector vt ∈ Rk:

vt =
m∑
i=1

αiH
C
i .

Then the context vector and the current hidden state are integrated:

hD
t = WD

h (Whht +Wvvt),

where Wh, WD
h , and Wv are weights to learn.

Autoregressive Layer The author also leverages an autoregressive layer as per LSTNet
for the scale-changing problem. The output of the i-th series is computed by:

hL
t,i =

qar−1∑
k=0

W ar
k xt−k,i + bar,

The final result is the combination of hD
t and hL

t :

X̂t = hD
t + hL

t .

To summarize, TPA-LSTM uses LSTM to deal with the preprocessed series to extract
a hidden state matrix whose rows and columns represent the corresponding series and
time steps. A CNN layer detects the temporal patterns of every series by convolving the
kernel with the row vector of the hidden state matrix. After that, an attention layer
is applied. It calculates the corresponding attention weights using the sigmoid function
and generates the context vector. Finally, combining the results from an autoregressive
module as per LSTNet, the model integrates the hidden state and the context vector to
yield the final forecasting.

5.3 Experiment
The novelty of this work is that we combined the three deep learning models with the five
multi-step strategies mentioned earlier to perform real multi-step forecasting.

5.3.1 Datasets

In our experiments, six datasets are selected to evaluate these deep learning models for
MTS multi-step forecasting. The statistics of these datasets are listed in Tab. 5.1.

• Electricity1: Hourly electricity consumption of 321 clients from 2012 to 2014. Series
in this dataset are complex seasonal.

• Exchange Rate2: Daily exchange rates of eight countries, i.e., Australia, British,
Canada, China, Japan, New Zealand, Singapore, and Switzerland, from 1990 to
2016. Series in this dataset are nonseasonal.

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://github.com/laiguokun/multivariate-time-series-data

84

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://github.com/laiguokun/multivariate-time-series-data

5.3. EXPERIMENT

• NASDAQ 100 Stock Data3: Stock price by minute from July 26 to December 22,
2016, of 81 corporations under NASDAQ 100 which are used as the driving series and
the NASDAQ Index 100 used as target series. Series in this dataset are nonseasonal.

• Solar Energy4: 10-minute-level solar power production data from photovoltaic plants
in Alabama State in 2006. Series in this dataset are seasonal.

• Traffic5: Hourly data from the California Department of Transportation describing
the road occupancy rates on San Francisco Bay area freeways from 2015 to 2016.
Seasonal data.

• Beijing PM2.5 Data6: Hourly data of the PM2.5 data of US Embassy in Beijing from
2010 to 2014, which is used as the driving and target series. Meteorological data
from Beijing Capital International Airport are also included as driving series as well.
Series in this dataset are seasonal.

If not specified, all the series in the datasets are harnessed as target series. We split
our datasets into training, validation, and test sets in chronological order by the ratio of
8:1:1.

Table 5.1: Dataset Description.

Dataset Length Dimension Frequency Seasonality

Electricity 26304 321 1 hour Complex

Exchange-Rate 7588 8 1 day Nonseasonal

NASDAQ-100 40560 82 1 minute Nonseasonal

Solar-Energy 52560 137 10 minutes Seasonal

Traffic 17544 862 1 hour Seasonal

Beijing-PM2.5 43800 8 1 hour Seasonal

5.3.2 Parameter Settings and Evaluation Metric

For simplicity, we took the same parameterization reported in [55] and [56] for LSTNet
and TPA-LSTM on Electricity, Exchange-Rate, Solar-Energy, and Traffic. For DA-RNN,
we followed the same parameter settings in [54] on NASDAQ-100. For other situations,
the tunable parameters were selected based on the results from the validation set. The
source codes of the aforementioned models are publicly available according to their papers.

Concretely, for LSTNet on NASDAQ-100 and Beijing PM2.5, we set the window size w
as 60 and 168, respectively. The periodicity pattern for Recurrent-skip was set to 30 and

3https://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_data.html
4https://www.nrel.gov/grid/solar-power-data.html
5https://pems.dot.ca.gov/
6https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data

85

https://cseweb.ucsd.edu/~yaq007/NASDAQ100_stock_data.html
https://www.nrel.gov/grid/solar-power-data.html
https://pems.dot.ca.gov/
https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data

5.4. RESULTS AND DISCUSSIONS

24, and the AR components were both characterized to 24. The recurrent and convolution
layer’s hidden dimensions were set to 100, while the CNN kernel size was 6. Apart from
the same parameterization of LSTNet, we set the number of the hidden state features to
12 on both NASDAQ-100 and Beijing PM2.5 Dataset for TPA-LSTM.

For DA-RNN, on Beijing PM2.5, we set the input window size to 10. On Electricity,
Traffic, Exchange-Rate, and Solar-Energy, the window size was set to 24, 24, 10, and 144,
respectively. Meanwhile, we fixed the encoder’s and decoder’s hidden dimensions to 64.

We performed a 128-minibatch training and a dropout after each layer as per LSTNet
with a dropout rate of 0.2. The Adam optimizer [107] was used for all models with a
learning rate of 0.0003. Furthermore, unlike the original normalization settings reported
in LSTNet and TPA-LSTM, which causes information leakage, we normalized the training,
validation, and test sets using the max-min values on their own.

We used the Root Relative Squared Error (RSE) as our evaluation metric with a slight
difference from the one in [55], which concentrates more on the errors of each series:

RSE =
1

K

K∑
i=1

√∑H
t=1(yt,i − ŷt,i)2√∑H

t=1(yt,i − y1:H,i)2
, (5.6)

where H is the forecasting horizon, and K is the number of series in the datasets. yt is
the ground truth at time t. ŷt is the forecast produced by the model, and y represents
the mean of y.

5.4 Results and Discussions
We present our results in Tab. 5.2 with the best results highlighted in bold and the
following contents.

One-Step-Ahead MIMO Direct MISMO Recursive
0.0

0.5

1.0

1.5

2.0

2.5

R
SE

 S
co

re
s

LSTNet
TPA-LSTM
DA-RNN

Figure 5.5: Average RSEs over the horizon for different strategies.

86

5.4. RESULTS AND DISCUSSIONS

Ta
bl

e
5.

2:
Fo

re
ca

st
in

g
R

SE
s

fo
r

di
ffe

re
nt

m
od

el
s

on
di

ffe
re

nt
fo

re
ca

st
ho

ri
zo

ns
w

it
h

di
ffe

re
nt

st
ra

te
gi

es

St
ra

te
gy

O
ne

-S
te

p
M

IM
O

M
IS

M
O

D
ir

ec
t

R
ec

ur
si

ve

D
at

as
et

H
or

iz
on

LS
T

N
et

T
PA

-L
ST

M
D

A
-R

N
N

LS
T

N
et

T
PA

-L
ST

M
D

A
-R

N
N

LS
T

N
et

T
PA

-L
ST

M
D

A
-R

N
N

LS
T

N
et

T
PA

-L
ST

M
D

A
-R

N
N

LS
T

N
et

T
PA

-L
ST

M
D

A
-R

N
N

E
le

ct
ri

ci
ty

(C
om

pl
ex

)

3
0.

08
52

0.
08

23
0.

08
58

0.
90

20
0.

43
10

0.
47

48
1.

12
50

1.
04

26
0.

54
66

1.
00

04
1.

08
61

0.
55

65
1.

94
27

2.
28

79
2.

33
00

6
0.

08
96

0.
09

20
0.

08
82

1.
12

32
0.

53
87

0.
50

39
1.

13
55

1.
46

72
0.

64
98

1.
09

47
1.

22
63

0.
57

69
1.

99
81

2.
25

02
2.

21
61

12
0.

09
51

0.
09

45
0.

09
23

1.
23

49
0.

66
26

0.
56

31
1.

42
38

1.
60

61
0.

92
93

1.
54

52
1.

41
34

0.
76

58
2.

89
20

2.
72

78
2.

79
53

24
0.

10
22

0.
10

11
0.

10
19

1.
38

57
0.

97
64

0.
70

04
1.

69
76

1.
69

16
1.

03
44

1.
71

32
1.

64
00

1.
16

55
3.

70
38

4.
09

29
3.

20
50

E
xc

ha
ng

e
(N

on
se

as
on

al
)

3
0.

02
33

0.
01

84
0.

01
73

0.
24

69
0.

12
24

0.
12

48
0.

19
56

0.
13

20
0.

09
70

0.
16

11
0.

27
44

0.
07

81
1.

59
07

3.
19

72
1.

04
45

6
0.

02
95

0.
02

44
0.

02
33

0.
29

29
0.

14
04

0.
12

03
0.

22
16

0.
14

56
0.

10
66

0.
22

31
0.

30
02

0.
11

23
1.

67
55

4.
23

72
1.

06
06

12
0.

03
70

0.
03

42
0.

03
38

0.
39

84
0.

16
16

0.
14

41
0.

38
48

0.
15

95
0.

12
76

0.
37

59
0.

32
21

0.
14

84
2.

07
69

4.
55

10
1.

20
25

24
0.

04
52

0.
04

52
0.

04
29

0.
40

23
0.

18
55

0.
17

18
0.

40
35

0.
18

94
0.

16
23

0.
53

69
0.

37
95

0.
19

85
2.

20
96

4.
78

17
1.

56
94

N
A

SD
A

Q
-1

01
(N

on
se

as
on

al
)

3
0.

25
80

0.
12

66
0.

13
01

0.
94

25
0.

47
61

0.
48

67
0.

95
60

0.
45

20
0.

49
68

1.
04

22
1.

46
79

0.
33

22
7.

89
94

5.
41

17
5.

21
39

6
0.

26
18

0.
13

27
0.

14
80

0.
89

04
0.

48
88

0.
51

59
1.

10
64

0.
61

58
0.

56
04

1.
06

14
1.

54
86

0.
34

52
7.

90
54

6.
78

27
6.

72
31

12
0.

29
15

0.
14

93
0.

15
05

0.
93

40
0.

52
89

0.
46

83
1.

01
91

0.
67

04
0.

69
61

1.
09

59
1.

57
98

0.
41

92
8.

11
66

6.
87

59
6.

93
42

24
0.

32
66

0.
16

22
0.

16
27

1.
09

92
0.

58
09

0.
64

08
1.

07
72

0.
69

62
0.

71
22

1.
13

16
1.

86
13

0.
56

97
9.

24
35

7.
32

09
8.

77
24

So
la

r
(S

ea
so

na
l)

3
0.

19
00

0.
18

15
0.

15
90

0.
29

55
0.

27
23

0.
25

02
0.

33
28

0.
30

03
0.

23
75

0.
25

83
0.

30
97

0.
22

31
0.

39
40

0.
38

93
0.

32
63

6
0.

26
01

0.
24

17
0.

23
09

0.
37

05
0.

33
63

0.
32

99
0.

33
30

0.
34

46
0.

31
99

0.
33

18
0.

38
08

0.
29

49
0.

47
07

0.
51

35
0.

41
66

12
0.

31
29

0.
33

36
0.

42
33

0.
36

30
0.

49
50

0.
47

29
0.

43
01

0.
47

27
0.

46
60

0.
43

84
0.

50
95

0.
45

13
0.

54
66

0.
67

01
0.

79
90

24
0.

45
25

0.
46

09
0.

57
52

0.
44

50
0.

50
33

0.
69

03
0.

60
92

0.
70

49
0.

68
48

0.
65

87
0.

70
15

0.
75

82
0.

72
18

0.
76

20
0.

89
21

Tr
affi

c
(S

ea
so

na
l)

3
0.

49
23

0.
46

09
0.

43
48

0.
70

32
0.

71
23

0.
83

29
0.

77
77

1.
04

08
0.

85
87

0.
79

29
0.

98
96

0.
82

84
0.

74
17

1.
21

04
1.

10
12

6
0.

50
03

0.
48

55
0.

50
16

0.
78

05
0.

81
66

0.
88

49
0.

83
90

1.
08

90
0.

91
28

1.
11

02
1.

10
72

1.
00

31
1.

29
99

1.
22

82
1.

38
74

12
0.

51
25

0.
49

60
0.

62
85

0.
81

81
1.

18
05

1.
00

14
1.

16
01

1.
33

95
0.

99
63

1.
20

54
1.

18
68

1.
05

44
1.

20
37

1.
39

51
1.

59
51

24
0.

52
99

0.
52

01
0.

59
22

0.
99

47
1.

24
82

1.
11

08
1.

29
79

1.
19

05
1.

29
94

1.
28

23
1.

30
05

1.
31

25
1.

35
74

1.
27

77
1.

77
65

B
ei

jin
g

P
M

2.
5

(S
ea

so
na

l)

3
0.

28
68

0.
26

91
0.

27
22

0.
55

44
0.

45
27

0.
49

97
0.

44
16

0.
51

91
0.

40
95

0.
44

33
0.

52
97

0.
40

26
0.

75
81

0.
69

40
0.

70
04

6
0.

35
33

0.
34

80
0.

33
63

0.
72

46
0.

71
92

0.
62

03
0.

65
09

0.
65

39
0.

61
17

0.
57

31
0.

65
60

0.
62

43
1.

26
52

1.
21

98
1.

03
27

12
0.

44
18

0.
43

32
0.

43
33

1.
08

16
0.

92
36

0.
99

41
0.

81
22

0.
92

28
0.

78
23

0.
80

23
0.

89
34

0.
84

97
1.

66
15

1.
65

05
1.

77
88

24
0.

50
19

0.
49

72
0.

50
01

1.
49

84
1.

42
32

1.
33

88
1.

02
21

1.
29

64
1.

30
63

1.
10

22
1.

27
79

1.
24

77
2.

44
71

2.
82

98
2.

67
19

W
in

ni
ng

co
un

t
2

12
10

6
7

11
5

4
15

8
6

10
7

7
10

87

5.4. RESULTS AND DISCUSSIONS

3 6 12 24
Horizon

0.5

1.0

1.5

2.0

2.5

3.0

R
SE

 S
co

re
s

One-Step-Ahead
MIMO
Direct
MISMO
Recursive

Figure 5.6: Average RSEs for different forecasting horizons.

Tab. 5.2 represents the RSEs of each model on six datasets with different seasonalities
under five strategies, i.e., One-Step-Ahead, Recursive, Direct, MIMO and MISMO. The
best results are printed in boldface.

The first question is whether the mentioned multi-step strategies can be applied to
deep learning models for multi-step forecasting. Fig. 5.5 illustrates the average RSEs of
different forecasting strategies. As the figure shows, the Recursive strategy performs the
worst while the other strategies perform better with tolerable errors w.r.t. the One-Step-
Ahead strategy. Less accumulated errors for the Direct, MIMO, and MISMO strategies
are reported in Fig. 5.6 as the slopes of their curves at the middle are relatively smaller
than that of the Recursive strategy on top.

Electricity Exchange NASDAQ Solar Traffic PM2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
SE

 S
co

re
s

LSTNet
TPA-LSTM
DA-RNN

| Complex | Nonseasonal | Seasonal |

Figure 5.7: Average RSEs for different datasets in MIMO strategy.

88

5.4. RESULTS AND DISCUSSIONS

LSTNet TPA-LSTM DA-RNN LSTNet TPA-LSTM DA-RNN LSTNet TPA-LSTM DA-RNN
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
R

SE
 S

co
re

s
MIMO
MISMO
Direct

| Complex | Nonseasonal | Seasonal |

Figure 5.8: Average RSEs for different datasets in MIMO, MISMO, and Direct strategy.

Fig. 5.7 presents the average of RSEs over four horizons for different datasets in MIMO
strategy. One obvious finding from Fig. 5.7 is that although all three models can capture
the seasonal pattern, the performance of LSTNet falls behind TPA-LSTM and DA-RNN
when facing series with zero or complex seasonalities. One explanation could be that
the Recurrent-Skip component in LSTNet dedicated to capturing seasonal patterns is
not applicable in this situation, as the periodicity pattern needs to be specified as a
hyperparameter. Inversely, for seasonal data, periodicity specification is favorable for
LSTNet in the case of Solar and Traffic, while less promising for Beijing PM2.5 whose
seasonality is less evident.

While TPA-LSTM uses a CNN to capture the temporal patterns, DA-RNN uses the
attention mechanism in its decoder to put more importance on relevant time steps. So it
is also interesting to note from Fig. 5.7 that DA-RNN performs slightly better in many
cases than TPA-LSTM. This means the CNN component in TPA-LSTM is weaker than
the attention mechanism in DA-RNN’s decoder in capturing temporal patterns in long
sequences.

Surprisingly, from Fig. 5.8, we noticed that using the MISMO or Direct strategy can
potentially damage the model’s performance, especially for TPS-LSTM. It shows massive
error growth when combined with MISMO and Direct for series with complex seasonal
and nonseasonal data. We attribute this to the break of seasonality’s continuity brought
by this kind of combination, damaging the model’s intrinsic ability to capture complex
seasonal patterns.

Furthermore, we noticed that a well-designed attention mechanism might help with
the input scale variation. This accords with our observations that although DA-RNN
does not include the AR component to respond to the changing scale, which LSTNet and
TPA-LSTM both use, it still gives, in general, the best results.

89

5.5. CONCLUSIONS

5.5 Conclusions
This investigation aimed to determine whether the deep learning methods are suitable for
dealing with the real MTS multi-step forecasting problem. The results gave a positive
answer: by combining with the MIMO/MISMO strategy, deep learning models are com-
petent to carry out real multi-step forecasting tasks. In the meantime, our experiments
also revealed several interesting findings on their performances dealing with data season-
ality. These could help us select the proper DL models for different tasks. Furthermore,
other strategies dedicated to multi-step forecasting [94] are worthy of future research as
well.

90

Chapter 6

Deep Learning Transformer-based
Forecasting: Rankformer & STLformer

Contents
6.1 Introduction . 92

6.2 Methods . 93

6.2.1 Rankformer/STLformer Architecture 93

6.2.2 RankCorrelation Block . 95

6.2.3 Multi-Level Decomposition Block 96

6.2.4 STL Decomposition Block . 96

6.3 Experiments . 97

6.3.1 Datasets . 97

6.3.2 Experimental Settings . 98

6.4 Results and Discussions . 99

6.4.1 Results of Rankformer . 99

6.4.2 Results of STLformer . 99

6.4.3 Complexity Analysis and Model Comparison 101

6.5 Conclusion . 101

The challenge of time series forecasting has been the focus of research in recent years, with
Transformer-based models using various self-attention mechanisms to uncover long-range
dependencies. However, complex trends and nonlinear serial dependencies presented in
some specific datasets may not always be captured properly. To address these issues, in
this chapter, we propose a novel Transformer-based model, namely Rankformer, leverag-
ing the rank correlation function and decomposition architecture for long-term time series
forecasting tasks. We also present STLformer, an updated version of Rankformer that
utilizes the STL decomposition architecture to improve forecasting performance. Rank-
former and STLformer outperform four state-of-the-art Transformer and two RNN models
across multiple datasets and forecasting horizons. This chapter can also be found in the
corresponding conference version of papers [108], [109].

91

6.1. INTRODUCTION

6.1 Introduction
TSF has been dominated for a few decades by econometric methods such as ARIMA,
ETS, and Theta method [14], [32], [81], [110], [111]. In the past few years, deep learning
has been applied to time series forecasting and achieved great success [48], [51], [112].
The most popular deep learning models for time series forecasting include Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformer models.
CNNs and RNNs have been widely exploited in forecasting tasks due to their ability to
capture sequential/temporal dependencies in the time series [101]. Some representative
works include LSTNet [55], DeepAR [113], and TCN [114].

Since its first birth in 2017, Transformer models have become increasingly popular
and applied successfully in various fields, including machine translation, computer vision,
and text generation, to list a few [63]–[66]. In the time series domain, Informer [72] was
the first work that introduced Transformer for time series forecasting with a ProbSparse
self-attention calculation and a self-attention distilling mechanism to handle the quadratic
computational complexity. Autoformer [73] substitutes the self-attention block with an
AutoCorrelation mechanism to discover the period-based dependencies and adopts a de-
composition structure to separate the long-term stationary trend and the seasonal pat-
terns. Other Transformer models were also applied to time series forecasting tasks, such as
Reformer [115], which employed locally sensitive hashing self-attention, and LogTrans [69],
which uses a heuristic method to reduce the complexity of the self-attention mechanism.

Nevertheless, the formerly mentioned Transformer models have not been able to ex-
ploit the long-range dependencies in time series fully, especially the nonlinear serial de-
pendencies. Informer [72] applied the ProbSparse self-attention mechanism to reduce the
computational complexity, but the hidden long-range dependency was not extracted prop-
erly. Autoformer [73] used the AutoCorrelation mechanism to discover the period-based
dependencies. However, the AutoCorrelation used in the model is based on the Pearson
correlation function, which supports only linear correlation, while in some time series, the
long-term dependencies are nonlinear. Also, Autoformer relies solely on simple moving
averages for decomposition, which may not accurately extract seasonal patterns, resulting
in suboptimal modeling for seasonal and trend parts and final results.

This chapter presents Rankformer and STLformer, two novel Transformer-based mod-
els for long-term time series forecasting. Rankformer leverages the rank correlation func-
tion for dependency discovery, while STLformer is the first of its kind to incorporate the
Seasonal-Trend decomposition using LOESS (LOcall Estimated Scatterplot Smoothing)
architecture into the Transformer framework. By leveraging the Rank Correlation and
the STL decomposition, our models are able to capture and model the trend and seasonal
patterns present in certain time series more precisely, resulting in improved forecasting
performance. Extensive experiments on four benchmark datasets demonstrate the supe-
riority of Rankformer and STLformer over other Transformer models for four different
forecasting horizons.

Overall, our contribution lies in the following aspects:

1. Introducing the Rank Correlation into the dependency discovery process.

2. Combining the Transformer architecture with STL decomposition.

3. Demonstrating their effectiveness for long-term time series forecasting.

92

6.2. METHODS

The rest of the chapter is organized as follows. Sec. 6.2 introduces the proposed
Rankformer and STLformer models. We then present the experimental setups and con-
figurations in Sec. 6.3. The comparison and discussions based on the results are given in
Sec. 6.4. Finally, Sec. 6.5 concludes the paper.

6.2 Methods
In this section, we introduce the architecture of Rankformer and STLformer, as well
as their key components, i.e., Rank Correlation, Multi-Level Decomposition, and STL
Decomposition modules.

6.2.1 Rankformer/STLformer Architecture

As shown in Fig. 6.1, Rankformer/STLformer is an encoder-decoder model per Auto-
former [73]. For Rankformer, the encoder is composed of a stack of N identical layers,
each containing one multi-head Rank Correlation (RankCorr) block, two Multi-Level De-
composition (MLDecomp) blocks, and one Feed-Forward (FF) block. The decoder is
a stack of M identical layers, each of which is composed of two multi-head RankCorr
blocks, three MLDecomp blocks, and one FF block. Combining the outputs of the last
MLDecomp block and the refined trend-cyclical part in the decoder composes the final
prediction. The STLformer substitutes the MLDecomp block with an STL Decomposi-
tion (STLDecomp) block. The architecture of Rankformer/STLformer is detailed in the
following contents.

Encoder

With the RankCorr and ML/STLDecomp blocks, the encoder decomposes the series into
seasonal and trend-cyclical parts. With the latter being neglected during the modeling
process, the encoder mainly models the seasonal component. The output of the l-th
encoder layer can be summarized as X l

en = Encoder(X l−1
en) and the process in one encoder

layer is expressed as follows:

S l,1
en ,_ = ML/STLDecomp

(
RankCorr(X l−1

en) + X l−1
en

)
,

S l,2
en ,_ = ML/STLDecomp

(
FF(S l,1

en) + S l,1
en

)
,

where S l,i
en denotes the seasonal component after the i-th MLDecomp block and X l

en =
S l,2

en , l ∈ {1, 2, ..., N}.

Decoder

The decoder in Rankformer/STLformer has two streams, i.e., the trend-cyclical stream
and the seasonal stream. While the seasonal stream continuously refines the seasonal
part of the time series, the trend-cyclical stream focuses on modeling the trend-cyclical
component. With a similar notation as per encoder, we can summarize the process in one

93

6.2. METHODS

Encoder
Input

Rank
Correlation

ML/STL
Decomp

Feed
Forward

ML/STL
Decomp

Encoder

𝑄 𝐾 𝑉

𝐾
𝑉

Rank
Correlation

ML/STL
Decomp

Rank
Correlation

Seasonal
Init

ML/STL
Decomp

Feed
Forward

ML/STL
Decomp

Trend-
cyclical Init

Prediction

Decoder

𝑄 𝐾 𝑉

𝑄

×𝑁

×𝑀

ML/STL
Decomp

Figure 6.1: The architecture of Rankformer/STLformer.

decoder layer as X l
de, T l

de = Decoder(X l−1
de , T l−1

de) and formalize it as follows:

S l,1
de , T

l,1
de = ML/STLDecomp

(
RankCorr(X l−1

de) + X l−1
de

)
,

S l,2
de , T

l,2
de = ML/STLDecomp

(
RankCorr(S l,1

de ,X
N
en) + S

l,1
de

)
,

S l,3
de , T

l,3
de = ML/STLDecomp

(
FF(S l,2

de) + S
l,2
de

)
,

T l
de = T l−1

de +Wl,1T l,1
de +Wl,2T l,2

de +Wl,3T l,3
de ,

where S l,i
en and T l,i

de are the seasonal and trend-cyclical components respectively, and Wl,1,
Wl,2, Wl,3 are trainable weights. The outputs of the l-th decoder layer are two fold: the
refined seasonal patterns X l

de = S l,3
de , and the multiple level trend-cyclical patterns T l

de,
where l ∈ {1, 2, ...,M}.

94

6.2. METHODS

Model Inputs and Outputs

We denote the input length as I, the output length as O, and the model dimension as d.
There are three inputs for Rankformer:

• The encoder input are the last I time steps in the time series: Xen ∈ RI×d.

• The seasonal stream input concatenates the latter half of the encoder’s decomposed
input and a length-O placeholder with zeros: Xde,S = concat(Xen,S,X0) ∈ R(I

2
+O)×d.

• The trend-cyclical stream input also consists of the latter half of the decomposed
Xen and a placeholder filled by the average of Xen: Xde,T = concat(Xen,T,Xavg) ∈
R(I

2
+O)×d.

The relationship between the inputs can be formalized as follows:

Xen,S,Xen,T = ML/STLDecomp

(
Xen

[
I

2
: I

])
,

Xde,S = concat(Xen,S,X0),

Xde,T = concat(Xen,T,Xavg).

The final output of the model is a combination of the seasonal and the trend-cyclical
streams in the decoder: WSXM

de +T M
de , where WS is a trainable weight to project XM

de into
the target dimension.

6.2.2 RankCorrelation Block

The Pearson correlation coefficient, also known as Pearson’s ρ, is widely used to measure
the linear correlation between two variables. Given two random variables X and Y ,
Pearson’s ρ defined as follows:

ρp(X, Y) =
Cov(X, Y)√
Var(X)Var(Y)

. (6.1)

The AutoCorrelation Function (ACF) adopts the Pearson correlation function to mea-
sure the correlation between two distant time points in a stationary time series yt:

ACF(k) = ρp(yt−k, yt) =
Cov(yt−k, yt)√
Var(yt−k)Var(yt)

, k = 0, 1, 2, ...,∀t.

However, in some time series, the long-term dependencies are not linear. In this case,
the nonlinear process can exhibit more complex autocorrelation structures than linear
ones and thus result in an erroneous dependencies measurement based on Pearson’s ρ.
To address this issue, we propose to use the Rank Correlation Function (RCF), more
generally known as Spearman’s ρ [116], to measure the nonlinear correlation. Spearman’s
ρ is defined as follows:

ρs(X, Y) =
Cov(R(X), R(Y))√
Var(R(X))Var(R(Y))

,

95

6.2. METHODS

where R(X) and R(Y) are the ranks of X and Y in (6.1). ρ denotes the usual Pearson
correlation coefficient but is applied to the rank variables, which is leveraged to compute
the Ranked ACF (RACF). ρs is defined in [−1, 1], where −1 indicates a perfect negative
monotonic relationship, 0 indicates no monotonic relationship, and 1 indicates a perfect
positive monotonic relationship. ρs is invariant to monotonic transformations of the vari-
ables and is robust to outliers. Therefore, it is more suitable for stationary time series
with nonlinear serial dependencies. Our RACF is defined as:

RACF(k) = ρs(yt−k, yt), k = 0, 1, 2, ...,∀t.

In our implementation, the RACF is computed by exploiting the FFT, which accel-
erates the Fourier transform to O(N logN), and the Wiener-Khinchin theorem, which
states that the ACF of a stationary time series can be computed by the Fourier transform
of its power spectrum. The ranking procedure is supported by the torchsort1 library,
which offers an efficient O(N logN) sorting operator [117]. Thus, the RACF is computed
by ranking the time series and then computing the ACF of the ranked time series. The
total computational complexity of calculating the RACF is thus O(N logN).

6.2.3 Multi-Level Decomposition Block

In Rankformer, we adopted a multi-level decomposition block to decompose the input
time series into the seasonal and trend-cyclical components. The block consists of multiple
moving average (MMA) filters with varying kernel sizes to yield different trend-cyclical
components. The MLDecomp block is formalized as follows:

Xseasonal,Xtrend-cyclical = MLDecomp (X) ,

Xtrend-cyclical =
K∑
k=1

Wdecomp,k ·MMA(Xinput, k),

Xseasonal = X − Xtrend-cyclical,

(6.2)

where K is a set of kernel sizes, Wdecomp,k is a trainable weight tensor. MMA denotes
multiple moving average filters, and Xtrend-cyclical and Xseasonal denote the trend-cyclical
and seasonal components, respectively. The output of the MLDecomp block is a weighted
sum of the trend-cyclical components.

6.2.4 STL Decomposition Block

The key difference between STLformer and Rankformer is substituting the Multi-Level
Decomposition block in Rankformer with the STL Decomposition block, which utilizes
LOESS regression.

LOESS was first proposed by Cleveland [26]. It is a nonparametric robust locally
weighted regression method for smoothing a scatterplot, (xi, yi), i = 1, ..., n, in which the
fitted value at xk is the value of a polynomial fit to the data using weighted least squares,
where the weight for (xi, yi) is large if xi is close to xk and small if it is not. It splits the
data into several small sections, performs weighted linear regressions on different sections,

1https://github.com/teddykoker/torchsort

96

https://github.com/teddykoker/torchsort

6.3. EXPERIMENTS

and connects the center of these curves to form the complete regression curve. Specifically,
LOESS is defined by the following sequence of operations for a given time series:

1. For one data point, often called the focal point, select k nearest points around it to
form a local window. Every focal point has a corresponding local window.

2. Calculate the weights of every point in the window through a weight function W ,
which is conventionally a Tricube function as follows:

T (x) =

{
(1− |x|3)3, for |x| < 1,

0, for |x| ≥ 1.

3. Fit a weighted linear regression in the window. For n focal points, we have n
weighted linear regressions.

4. Connect the center points of the n weighted regressions to form the final fitted curve.

The time complexity of LOESS mainly involves traversing the entire dataset to select
the k nearest points for each point to form the local window, which leads to an O(N2)
complexity. This issue can be resolved by using a k-d tree for acceleration, which can
rapidly find the nearest neighbors of a data point. Implementing a k-d tree can reduce
the time complexity of the LOESS algorithm to O(N logN) [26].

In 1990, Cleveland et al. [25] proposed the famous STL decomposition method, which
leverages LOESS to estimate the trend and seasonal components, contributing to a ver-
satile and robust method for decomposing time series.

Our model adopted the idea of STL decomposition and implemented the k-d tree
LOESS to decompose the input time series into seasonal and trend-cyclical components.
The STLDecomp block employs the LOESS regression to fit a locally smoothed trend-
cyclical component. We formalize the STLDecomp block as follows:

Xseasonal,Xtrend-cyclical = STLDecomp (X) ,
Xtrend-cyclical = LOESS (X) ,
Xseasonal = X − Xtrend-cyclical,

where LOESS is the LOESS regression function. STLDecomp serves as an interchangeable
block of MLDecomp in STLformer.

6.3 Experiments
This section presents our experimental settings and results.

6.3.1 Datasets

Rankformer and STLformer were tested with other state-of-the-art methods on four well-
known datasets:

97

6.3. EXPERIMENTS

• Electricity Transformer Temperature (ETT)2: Oil temperature and six power load
features recorded every 15 minutes from July 2016 to July 2018 in two Chinese
counties. Seasonal data.

• Exchange-Rate3: Daily exchange rates of eight countries, i.e., Australia, British,
Canada, China, Japan, New Zealand, Singapore, and Switzerland, from 1990 to
2016. Nonseasonal.

• Weather4: 10-minute level local climate data containing 21 meteorological features
for 2020 collected by Max-Planck-Institut für Biogeochemie, Jena. Complex sea-
sonal data.

• Influenza-Like Illness (ILI)5: Weekly ILI patients data from the U.S. Centers for
Disease Control and Prevention between 2002 to 2021, containing the ratio of ILI
patients and the total number of patients. Seasonal data.

All datasets were separated into train/validation/test sets in chronological order with a
7/1/2 split, except for the ETT dataset, which was split into 6/2/2, as per Autoformer [73]
and Informer [72]. The datasets’ statistics are listed in the first four rows of Tab. 6.1.

We also evaluated the significance of the nonlinearity in the serial dependencies by
performing Engle’s Lagrange Multiplier Test [118] on the four datasets. It assesses the
significance of autoregressive conditional heteroskedasticity (ARCH) effects in a time se-
ries. A significant result reveals nonlinear serial dependencies in the series. The test
results are listed in the last two rows of Tab. 6.1.

Table 6.1: Dataset Description

Dataset ETT Exchange Weather ILI

Length 69680 7588 52696 966
Dimension 7 8 21 7
Seasonality Seasonal Nonseasonal Complex Seasonal
Sampling
Frequency 15 min 1 day 10 min 1 week

Engle’s test
p-value < 2.2e-16 < 2.2e-16 < 2.2e-16 0.8126

ARCH effect Significant Significant Significant Insignificant

6.3.2 Experimental Settings

For both Rankformer and STLformer, we kept the same number of encoder-decoder layers
settings as Autoformer: two encoder layers and one decoder layer. Rankformer and

2https://github.com/zhouhaoyi/ETDataset
3https://github.com/laiguokun/multivariate-time-series-data
4https://www.bgc-jena.mpg.de/wetter/
5https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

98

https://github.com/zhouhaoyi/ETDataset
https://github.com/laiguokun/multivariate-time-series-data
https://www.bgc-jena.mpg.de/wetter/
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html

6.4. RESULTS AND DISCUSSIONS

STLformer were trained using the Mean Square Error loss and the Adam optimizer [107]
with an initial learning rate of 10−4. The batch size was set to 32. Models were trained for
ten epochs with a learning rate scheduler that reduces the learning rate by a factor of 0.5
when the validation loss plateaus. Both Rankformer and STLformer were implemented
in PyTorch [119] and trained on a single NVIDIA Tesla V100 GPU.

6.4 Results and Discussions
We evaluated Rankformer and STLformer against the following state-of-the-art mod-
els: Autoformer [73], Informer [72], LogTrans [69], Reformer [115], LSTNet [55], and
LSTM [120]. We used the Mean Square Error (MSE) and the Mean Absolute Error
(MAE) as the evaluation metrics, and we fixed the input length to 36 for ILI and 96 for
others as per Autoformer. The results are presented in Tab. 6.2. The best results are
highlighted in bold, and the second-best results are highlighted with underscores.

6.4.1 Results of Rankformer

Overall, Rankformer outperforms the other methods on the ETT, Exchange-Rage, and
Weather datasets and is slightly weaker than Autoformer on the ILI dataset. Particularly,
under the Input-96-Output-96 setting, Rankformer yields 13.3% MSE reduction on ETT
and 17.5% on Exchange-Rate, compared to Autoformer. It also outperforms Autoformer
on the Weather dataset, but the difference is not significant.

The results on the Exchange-Rate dataset are particularly impressive. Despite the
fact that Exchange-Rate is a very challenging dataset without any notable periodicity,
Rankformer still gives the best improvement over Autoformer. We attribute this to the
nonlinear serial dependencies in the dataset being captured more properly by Rankformer
than by Autoformer.

On the contrary, due to the high linear correlation in the ILI dataset, Rankformer is not
able to outperform Autoformer. In fact, the p-value of Engle’s Lagrange Multiplier test
of the ILI dataset is 0.8126 (≫ 0.05), which means that there are statistically significant
linear serial dependencies inside the ILI series that can be handled more appropriately by
Autoformer.

6.4.2 Results of STLformer

In general, STLformer achieved superior performance compared to the other methods on
the ETT, Exchange-Rate, and Weather datasets while being slightly less accurate than
Autoformer and Rankformer on the ILI dataset. STLformer also performed slightly better
than Autoformer on the Weather dataset but also marginally poorer than Rankformer.

On the Exchange-Rate dataset, despite the absence of any significant periodicity in
the dataset, STLformer still achieved the best performance boost on average for both
Rankformer (4.84%) and Autoformer (21.45%). We attribute this to STLformer’s STL
Decomposition Block being better at extracting the trend and seasonal patterns, thus
resulting in better handling of the dataset’s nonlinear serial dependencies. STLformer
also achieved decent improvements on the ETT dataset, with an average boost of 4.80%
for Rankformer and 9.74% for Autoformer, compared to their respective performances

99

6.4. RESULTS AND DISCUSSIONS

Ta
bl

e
6.

2:
Fo

re
ca

st
in

g
re

su
lt

s
fo

r
di

ffe
re

nt
m

od
el

s
on

di
ffe

re
nt

fo
re

ca
st

ho
ri

zo
ns

M
od

el
s

S
T

L
fo

rm
er

[1
09

]
R

an
kf

or
m

er
[1

08
]

A
ut

of
or

m
er

[7
3]

In
fo

rm
er

[7
2]

Lo
gT

ra
ns

[6
9]

R
ef

or
m

er
[1

15
]

LS
T

N
et

[5
5]

LS
T

M
[1

20
]

M
et

ri
c

M
SE

M
A

E
M

SE
M

A
E

M
SE

M
A

E
M

SE
M

A
E

M
SE

M
A

E
M

SE
M

A
E

M
SE

M
A

E
M

SE
M

A
E

ETT

96
0.

20
9

0.
29

8
0.

22
1

0.
30

2
0.

25
5

0.
33

9
0.

36
5

0.
45

3
0.

76
8

0.
64

2
0.

65
8

0.
61

9
3.

14
2

1.
36

5
2.

04
1

1.
07

3

19
2

0.
26

8
0.

33
0

0.
27

5
0.

33
3

0.
28

1
0.

34
0

0.
53

3
0.

56
3

0.
98

9
0.

75
7

1.
07

8
0.

82
7

3.
15

4
1.

36
9

2.
24

9
1.

11
2

33
6

0.
33

9
0.

37
3

0.
34

2
0.

37
7

0.
33

9
0.

37
2

1.
36

3
0.

88
7

1.
33

4
0.

87
2

1.
54

9
0.

97
2

3.
16

0
1.

36
9

2.
56

8
1.

23
8

72
0

0.
41

4
0.

41
5

0.
41

9
0.

41
6

0.
42

2
0.

41
9

3.
37

9
1.

38
8

3.
04

8
1.

32
8

2.
63

1
1.

24
2

3.
17

1
1.

36
8

2.
72

0
1.

28
7

Exchange

96
0.

15
1

0.
27

9
0.

16
2

0.
29

0
0.

19
7

0.
32

3
0.

84
7

0.
75

2
0.

96
8

0.
81

2
1.

06
5

0.
82

9
1.

55
1

1.
05

8
1.

45
3

1.
04

9

19
2

0.
23

8
0.

35
6

0.
25

1
0.

36
5

0.
30

0
0.

36
9

1.
20

4
0.

89
5

1.
04

0
0.

85
1

1.
18

8
0.

90
6

1.
47

7
1.

02
8

1.
84

6
1.

17
9

33
6

0.
41

9
0.

47
8

0.
42

8
0.

48
6

0.
50

9
0.

52
4

1.
67

2
1.

03
6

1.
65

9
1.

08
1

1.
35

7
0.

97
6

1.
50

7
1.

03
1

2.
13

6
1.

23
1

72
0

1.
09

8
0.

81
3

1.
15

7
0.

83
7

1.
44

7
0.

94
1

2.
47

8
1.

31
0

1.
94

1
1.

12
7

1.
51

0
1.

01
6

2.
28

5
1.

24
3

2.
98

4
1.

42
7

Weather

96
0.

26
4

0.
33

3
0.

26
3

0.
33

2
0.

26
6

0.
33

6
0.

30
0

0.
38

4
0.

45
8

0.
49

0
0.

68
9

0.
59

6
0.

59
4

0.
58

7
0.

36
9

0.
40

6

19
2

0.
31

0
0.

36
5

0.
29

8
0.

35
6

0.
30

7
0.

36
7

0.
59

8
0.

54
4

0.
65

8
0.

58
9

0.
75

2
0.

63
8

0.
56

0
0.

56
5

0.
41

6
0.

43
5

33
6

0.
35

0
0.

39
4

0.
35

0
0.

39
0

0.
35

9
0.

39
5

0.
57

8
0.

52
3

0.
79

7
0.

65
2

0.
63

9
0.

59
6

0.
59

7
0.

58
7

0.
45

5
0.

45
4

72
0

0.
43

3
0.

44
0

0.
43

0
0.

43
5

0.
41

9
0.

42
8

1.
05

9
0.

74
1

0.
86

9
0.

67
5

1.
13

0
0.

79
2

0.
61

8
0.

59
9

0.
53

5
0.

52
0

ILI

24
3.

69
0

1.
35

3
3.

55
6

1.
31

9
3.

48
3

1.
28

7
5.

76
4

1.
67

7
4.

48
0

1.
44

4
4.

40
0

1.
38

2
6.

02
6

1.
77

0
5.

91
4

1.
73

4

36
3.

01
2

1.
13

3
2.

82
1

1.
11

2
3.

10
3

1.
14

8
4.

75
5

1.
46

7
4.

79
9

1.
46

7
4.

78
3

1.
44

8
5.

34
0

1.
66

8
6.

63
1

1.
84

5

48
3.

13
4

1.
19

8
2.

90
7

1.
14

4
2.

66
9

1.
08

5
4.

76
3

1.
46

9
4.

80
0

1.
46

8
4.

83
2

1.
46

5
6.

08
0

1.
78

7
6.

73
6

1.
85

7

60
3.

53
1

1.
30

8
3.

23
2

1.
23

9
2.

77
0

1.
12

5
5.

26
4

1.
56

4
5.

27
8

1.
56

0
4.

88
2

1.
48

3
5.

54
8

1.
72

0
6.

87
0

1.
87

9

100

6.5. CONCLUSION

with their original decomposition blocks. This is less than the performance boost on the
Exchange-Rate dataset. We observed that the ETT dataset has a significant seasonality,
where a standard moving average can effectively separate the trend and seasonal patterns.
At the same time, Exchange-Rate is nonseasonal, which requires a more sophisticated de-
composition method to help the model focus on modeling different patterns. This explains
why STLformer achieved a better performance boost on the Exchange-Rate dataset.

For the Weather dataset, STLformer outperformed Autoformer but not Rankformer.
We think as the Weather dataset exhibits a complex seasonality, Rankformer’s Multi-Level
Decomposition block is more suitable for the dataset than STLformer’s STL-based decom-
position block. For ILI, both STLformer and Rankformer filed to outperform Autoformer,
and there is no performance boost from STL decomposition. The p-value of Engle’s La-
grange Multiplier test on the ILI dataset was 0.8126, indicating statistically significant
linear serial dependencies that can be handled more appropriately by the AutoCorrelation
Block adopted in Autoformer.

6.4.3 Complexity Analysis and Model Comparison

Thanks to the FFT and Wiener-Khinchin theorem, Rankformer achieves an O(N logN)
complexity. It is not only a huge advantage in the computing speed compared to the
original Transformer’s O(N2) complexity but also brings the convenience of nonlinear
serial dependencies measurement to Autoformer without augmenting the time complexity.
As for STLformer, we adopted a k-d tree implementation for the LOESS regression, which
can be done in O(N logN) time. These advantages make Rankformer and STLformer
much more efficient than the Transformer, especially when dealing with long sequences,
and also more appropriate for forecasting time series with nonlinear serial dependencies.

Rankformer, STLformer, and Autoformer are very similar in terms of their measure-
ment of correlation. The only difference is that Rankformer/STLformer uses a rank-based
ACF, i.e., the RACF, while Autoformer uses a value-based ACF, which means, with an
optimized sorting and ranking operator, the RACF can be easily integrated into Auto-
former and enables it for nonlinear time dependencies measurement.

In terms of the trend and seasonal patterns discovery, STLformer employed a more
sophisticated decomposition method, i.e., STL decomposition, while Rankformer and Aut-
oformer adopted a multi-level moving average decomposition. We think our STL Decom-
position Block could be preferred for most datasets, while the Multi-Level Decomposition
Block is more suitable for datasets with complex seasonality.

6.5 Conclusion
In this chapter, we propose a novel method, Rankformer, for forecasting time series, espe-
cially those with nonlinear serial dependencies, and an updated version called STLformer
regarding the decomposition structure. Rankformer is based on the Transformer archi-
tecture and uses a rank-based ACF to measure the nonlinear serial dependencies, while
STLformer leverages the STL decomposition to extract trend and seasonal patterns bet-
ter. We show that Rankformer outperforms Autoformer, a state-of-the-art method with
linear serial dependencies measurement, on three real-world datasets. At the same time,

101

6.5. CONCLUSION

experiments on two datasets demonstrate that STLformer performs better than the pre-
vious Rankformer, which solely corporates moving averages for decomposition, proving
the effectiveness of the STL decomposition on certain datasets. We also show that Rank-
former and STLformer are more efficient than the original Transformer in terms of both
computing speed and memory usage. Furthermore, we show that the RACF and STL
Decomposition Block can be easily integrated into other Transformer-based models to
improve their performance. In fact, in most nonlinear serial dependencies cases, the series
shows an ARCH effect, which can be captured by the RACF. In future work, we plan
to explore the robust LOESS for the presence of perturbations and a multi-level LOESS
for complex seasonality. We would also like to investigate the possibility of integrating
other nonlinear serial dependencies measurement methods, such as Generalized ARCH
(GARCH), to further enhance the performance of Rankformer and STLformer.

102

Chapter 7

A Web Application Prototype

Contents
7.1 Introduction . 103

7.2 The Prototype: A Web Application 104

7.2.1 User Interface . 104

7.2.2 Technology Stack and Technical Architecture 108

7.2.3 Core Functionalities and Algorithms 110

7.2.4 Deployment and Maintenance 114

7.3 Conclusion . 114

In this chapter, we present the prototype developed for ATTILA’s prediction project.
The prototype is a web application that allows the user to upload a dataset and select a
forecasting model. The application then generates the forecasted values, renders them in
the browser, and calculates the corresponding error metrics.

In Sec. 7.1, we explain the motivation behind the development of the prototype and
the requirements demanded. Sec. 7.2 presents in detail the prototype in terms of its
user interface, technical architecture, core functionalities, and several different aspects.
Finally, Sec. 7.3 concludes the chapter and presents the future work.

7.1 Introduction
The main objective behind the prototype is to provide an application that allows the user,
mainly the managers of an agency, to easily perform forecasting on their agencies’ data,
in order to obtain an overview of the future performance and can then help them better
manage the agency. The prototype is also a proof of concept for the ATTILA project.

Specifically, the application needs to provide the user with the following functionalities:

• Upload a dataset. The user should be able to upload a dataset to the application.

• Select an agency. The user should be able to select an agency from the uploaded
dataset.

103

7.2. THE PROTOTYPE: A WEB APPLICATION

• Select a forecasting model. The user should be able to select a forecasting model
from a list of available models.

• Select a forecasting mode. The user should be able to choose whether to perform
training or a prediction.

• Select a forecasting horizon. The user should be able to select the forecasting
horizon.

• Visualize the forecasted values. The application should be able to visualize the
forecasted values in the browser.

• Calculate the error metrics. The application should be able to calculate the
error metrics for the forecasted values.

• Download the forecasted values. The user should be able to download the
forecasted values in an Excel file.

The developed prototype is a web application that fulfills the aforementioned require-
ments. In the following sections, this web application will be presented in detail.

7.2 The Prototype: A Web Application

7.2.1 User Interface

The user interface of the prototype has three pages:

• Home page. The home page is the first page that the user sees when accessing
the application. It contains a brief introduction to the application and two buttons
to upload the required dataset files. It also allows the user to select the agency and
the indicator to be forecasted, with two toggleable dropdowns. The home page is
shown in Fig. 7.1.

• Statistics page. The Statistics page is the page that the user sees after uploading
the dataset files. It contains a table that shows the statistics of the uploaded dataset,
including the name of the selected agency, the name of the selected indicator, and
the number of data points as well as the final validated date. It also allows the user
to select the forecasting model, the forecasting mode (training or prediction),
and the forecasting horizon. The Statistics page is demonstrated in Fig. 7.2.

• Result page. The user sees the result page after the forecasting is done. It contains
an interactive chart that demonstrates the forecasted values and the actual values,
as well as the prediction interval. This chart allows the user to hover, zoom, and pan
the data points. If the user has selected the training mode, it will also display the
forecasting error. This page also provides a button that allows the user to download
the forecasted values in an Excel file. The result page is shown in Fig. 7.3.

104

7.2. THE PROTOTYPE: A WEB APPLICATION

Figure 7.1: Home page.

105

7.2. THE PROTOTYPE: A WEB APPLICATION

Figure 7.2: Statistics page.

106

7.2. THE PROTOTYPE: A WEB APPLICATION

Figure 7.3: Result page.

107

7.2. THE PROTOTYPE: A WEB APPLICATION

7.2.2 Technology Stack and Technical Architecture

Technology Stack

The prototype is a web application developed using the Flask framework, which allows
the user to develop web applications using the Python programming language. It is
open-sourced and available on GitHub. The Flask framework is also free to use and is
distributed under the BSD-3-Clause license.

Figure 7.4: The libraries used in the prototype.

In our Flask application, several frameworks and libraries are incorporated to create
a well-structured and functional web application, including:

1. Flask Web framework1. It provides the foundation for our web application by
offering essential features such as routing, template engine, and server support.

2. Jinja2 templating engine2. Jinja is a fast, expressive, extensible templating
engine. It is Flask’s default templating engine and allows for dynamic HTML pages
in the application.

3. Bootstrap3. It is a popular front-end framework that simplifies page layout and
design by providing pre-defined CSS styles and components. In our application, we
adopted the Bootstrap-Flask4 extension, which integrates Bootstrap into Flask.

4. Plotly5. Plotly is a library for creating interactive charts that can be embedded
within the Flask application to provide visually appealing and informative data
visualizations.

1https://flask.palletsprojects.com/en/2.3.x/
2https://jinja.palletsprojects.com/en/3.1.x/
3https://getbootstrap.com/
4https://bootstrap-flask.readthedocs.io/en/stable/
5https://dash.plotly.com/

108

https://flask.palletsprojects.com/en/2.3.x/
https://jinja.palletsprojects.com/en/3.1.x/
https://getbootstrap.com/
https://bootstrap-flask.readthedocs.io/en/stable/
https://dash.plotly.com/

7.2. THE PROTOTYPE: A WEB APPLICATION

5. Data processing libraries. We employed several data processing libraries, such
as pandas [121] and NumPy [122], to enable the analysis and manipulation of data
to produce the forecasting results.

6. Scientific libraries. We also used several scientific libraries, such as SciPy [123],
scikit-learn [98], sktime [22], statsmodels [15], and XGBoost [124] to implement the
forecasting algorithms.

Fig. 7.4 summarizes the libraries used in the prototype.

The Model-View-Controller Design Pattern

The aforementioned components come together to form a typical Flask web application,
which follows the Model-View-Controller (MVC) design pattern. There are three compo-
nents in this pattern. In our Flask application, they can be described as follows:

1. Model. This represents the data processing and business logic components of the
application, such as the time series forecasting algorithms and data manipulation.

2. View. This represents the HTML pages built using Jinja2 templates and Bootstrap,
which present data to the user and collect user input.

3. Controller. This is the Flask routes and view functions that handle user requests,
invoke the appropriate model components to process data, and return the results to
the views for presentation.

Controller
Brain

Controls and decides
how data is displayed

View
UI

Represents current
model state

Model
Data

Data Logic
Updates data
via setters and
event handlers

Sets data
via setters

Initiates Modifies

Pulls data via gettersPulls data via getters

Figure 7.5: The MVC design pattern.

The architecture of the MVC design pattern can be illustrated by Fig. 7.5. By following
the MVC design pattern, the application can be separated into three distinct components,

109

7.2. THE PROTOTYPE: A WEB APPLICATION

which makes it easier to maintain and extend the application. For example, if a new
feature is required, the developer can simply add a new route and view function to the
Controller, and add a new HTML page to the view, without the need to modify the model
component.

7.2.3 Core Functionalities and Algorithms

As mentioned in Sec. 7.2.1, the prototype provides three core functionalities: data upload-
ing, data preprocessing, and forecasting. In this section, we will describe the technical
details of these functionalities and the forecasting algorithms involved.

Data Uploading

The data uploading functionality allows the user to upload several Excel files containing
the time series data to be analyzed. The uploaded file is then processed by the Flask
server and stored in the uploads folder. When the user uploads a file, the following
components and steps in the Flask web application are called in sequence:

1. The user selects a file and clicks the <Upload!> button on the home page.

2. The browser sends the file to the specified route through an HTTP POST request
to the Flask server.

3. Once the Controller component receives the request, it invokes the Model compo-
nent. The Model will store the uploaded file in the uploads folder, preprocess the
data and store the processed data in the data folder in CSV format.

4. Once the processing is complete, the Model component will return the results to the
Controller component.

Browser (User Select File)
|
v

Home Page (View)
|
v

Controller --------> Model
|
|--> Data Storage
|
|--> Data Preprocessing
|

Controller <-------- Model
|
v

Statistics Page (View)

Figure 7.6: The data uploading process.

110

7.2. THE PROTOTYPE: A WEB APPLICATION

5. The Controller then passes the results to the View component, which will navigate
to the Statistics page and display the results to the user.

The data uploading process can be illustrated by the chart in Fig. 7.6.

Data Preprocessing

In this part, for confidential reasons, we will omit the details of the data and the data pre-
processing procedure, and focus on the implementation details of the data preprocessing
functionality.

The data preprocessing functionality allows the user to preprocess the uploaded data
before performing forecasting. All the preprocessing steps are hidden from the user and
performed automatically by the Flask server. The user can view the results of each step
on the Statistics page. This process will call the following components and steps in the
Flask web application in sequence:

1. Assuming the user has already uploaded the Excel file and the Controller has already
passed the uploaded file to the Model for processing.

2. The Model starts performing preprocessing on the uploaded data. The preprocessing
steps include data cleaning, missing data handling, data transformation, feature
engineering, and data splitting. In this step, the Model component will invoke the
data processing libraries to perform the preprocessing steps and adjust the data
structure and format as needed by different forecasting algorithms.

3. Once the preprocessing is complete, the Model component will return the results to
the Controller.

4. The Controller update the View based on the results returned by the Model. The
user can view the results on the Statistics page.

5. After preprocessing, the user can click the <Predict!> button on the Statistics page
to perform forecasting.

The data preprocessing procedure can be illustrated by Fig. 7.7.

Forecasting

The forecasting functionality allows the user to perform forecasting on the preprocessed
data by selecting different forecasting algorithms and settings. Similar to previous func-
tionalities, the forecasting functionality will also sequentially call these following steps:

1. User clicks the <Predict!> button on the Statistics page.

2. The web browser sends an HTTP POST request to the Flask server, passing the
selected forecasting algorithm and settings.

3. The Controller in the server receives the request and passes the selected forecasting
algorithm and settings to the Model.

111

7.2. THE PROTOTYPE: A WEB APPLICATION

Browser (User Click)
|
v

Statistics Page (View)
|
v

Controller --------> Model
|
|--> Data Cleansing
|
|--> Handling Missing Values
|
|--> Data Transformation
|
|--> Feature Engineering
|

Controller <-------- Model
|
v

Statistics Page (View) - Updated

Figure 7.7: The data preprocessing procedure.

4. The Model invokes the pre-trained forecasting model or trains a real-time forecasting
model and generates prediction values based on the preprocessed data.

5. Once the prediction values are generated, the Model returns the results to the
Controller.

6. The Controller passes the results to the View, which will display the results on the
Result page.

7. The user can check the forecasting results in the Result page, and continue to
interact with the application as needed.

This procedure can be illustrated by the chart in Fig. 7.8.
We also provide a <Save> button on the Result page, allowing the user to download

the forecasting results in the form of an Excel file. Here is a sequence of steps that will
be called when the user clicks the <Save> button:

1. Once this button is clicked, the browser will send an HTTP GET request to the
Flask server, which will invoke the Controller.

2. The Controller converts the results into Excel format and saves it in the temporary
memory in the form of a BytesIO object.

3. The Controller then sets the response headers, including the file name and file type,
and sends the file content back to the browser as a response.

112

7.2. THE PROTOTYPE: A WEB APPLICATION

Browser (User Click)
|
v

Statistics Page (View)
|
v

Controller --------> Model
|
|--> Pre-trained Model Prediction
|
|--> Online Model Training and Prediction
|

Controller <-------- Model
|
v

Result Page (View)

Figure 7.8: Forecasting procedure.

4. Based on the response headers, the browser will then prompt the user to save the
file.

Fig. 7.9 illustrates this procedure.

Browser (User Click)
|
v

Controller
|
v

Server (Temp File)
|
v

Response (with File)
|
v

Browser (Save File)

Figure 7.9: Saving results procedure.

Through these different processes, the MVC architecture works together to facilitate
the interaction between data processing and the user interface. During this process, Flask
acts as a web framework, responsible for handling HTTP requests/responses, as well as
dispatching the corresponding Controller logic.

Algorithms and Settings

The application provides different forecasting algorithms for the user. For now, the fol-
lowing algorithms are implemented:

113

7.3. CONCLUSION

• Statistical Algorithms: ARIMA, ETS, Theta, and Prophet.

• Machine Learning Algorithms: SVR, k-NN, Random Forest, Gaussian Process,
and Gradient Boosting.

For all implemented algorithms, two modes are offered: training and prediction. In
the training mode, the last few data points (selected by the user) will be used as the test
set, and the rest of the data will be used as the training set. In this mode, the model’s
performance will be evaluated by the Mean Absolute Percentage Error (MAPE), in order
to help the user to choose the most fitted model for the selected indicator. While in the
prediction mode, all data points will be used as the training set, and the application will
generate prediction values for the future.

The application offers automatic parameterization for all implemented algorithms.
Currently, the volume of the company’s data is insufficient for training deep learning
models. This is the reason why this functionality is not offered in the application. In the
future, a transfer learning strategy may be considered to add appropriate deep learning
methods to the application.

7.2.4 Deployment and Maintenance

Figure 7.10: Docker®.

For delivery, the application is packed in a Docker6 container, a lightweight, stan-
dalone, executable package of software that includes everything needed to run an appli-
cation: code, runtime, system tools, system libraries, and settings, allowing the user to
run the application on any compatible machine with a single command.

The application can also be deployed on a cloud server or integrated as a functionality
of the company’s intranet. As it is developed following an MVC design pattern, the
application can be easily maintained, updated, or extended.

7.3 Conclusion
In this chapter, we have presented the design and implementation of a prototype in the
form of a web application.

Specifically, we introduced the requirements of the functionalities at the beginning of
this chapter. Then we presented in detail the design of the application, including the

6https://www.docker.com/

114

https://www.docker.com/

7.3. CONCLUSION

user interface, the technology stack, the architecture, core functionalities, and forecast-
ing algorithms included. Finally, we discussed the deployment and maintenance of the
application.

The application is built upon a web-based user interface, which is developed using
Python, along with several support libraries. Specifically, we used Flask as the web
framework, Bootstrap for the front end, and Plotly for visualization. The application is
designed following an MVC design pattern, which allows more convenient maintenance
and extension of the application. The application is also packed in a Docker container,
which allows the user to run the application on any compatible machine with a single
command.

115

Chapter 8

Conclusions and Outlook

This chapter summarizes the thesis and proposes some future research directions.

8.1 Summary of the Thesis
In this thesis, we have presented several contributions to the TSF problem, mainly in
the econometric and deep learning domains. We have also developed a prototype web
application to showcase the practicality of implementing our suggested models in real-
world situations. We want to summarize them separately in this section.

For Econometric Time Series Forecasting

In our work, we undertook a comprehensive and in-depth review of state-of-the-art econo-
metric time series analysis and forecasting techniques. Our examination spanned a variety
of methodologies, including AutoRegressive Integrated Moving Average (ARIMA), Expo-
nential Smoothing State Space Model (ETS), and Vector AutoRegressive (VAR) models,
along with their respective variations. This review delved into the underlying mathemat-
ical principles and theoretical foundations that govern these sophisticated approaches,
elucidating their relevance and applications.

Further, we also explored several time series decomposition methods, such as addi-
tive and multiplicative decomposition. Additionally, we introduced the Seasonal-Trend
decomposition utilizing LOESS, known as STL, and provided a detailed study of it. More-
over, we expounded on the Theta method, which is a decomposition-based method for
analyzing time series, along with its generalizations and alternative versions, to offer a
broader understanding of these approaches and their applicability in the field.

On the foundation of the aforementioned review, we conducted a thorough investi-
gation of various forecasting techniques, integrating them with STL decomposition and
comparing their performance. The comparison encompasses three econometric meth-
ods and five machine learning models, with extensive experiments carried out on the
M3-Competition datasets. Our findings reveal that employing STL decomposition as
a preprocessing step for the monthly industrial M3-Competition dataset proves advan-
tageous for statistical forecasting methods yet detrimental for their ML counterparts.
Furthermore, the synergistic combination of STL and the Theta method surpasses the
performance of alternative approaches under evaluation.

116

8.2. CHALLENGES, OPEN PROBLEMS, AND FUTURE PERSPECTIVES

For Deep Learning Time Series Forecasting

Our exploration focused primarily on the key deep learning models utilized for TSF tasks,
including MLPs, CNNs, RNNs, and Attention Mechanism. Moreover, we delved into the
main challenges encountered in TSF and drew comparisons between traditional machine
learning and deep learning models. We also revisited the Transformer model and offered
an extensive overview of the Transformer model and its derivatives for the TSF problem,
encompassing 14 distinct Transformer-based models. We examine their enhancements
over the standard Transformer and their precursors.

We investigated the application of three DL models, DA-RNN, LSTNet, and TPA-
LSTM, for multivariate TSF (MTSF) problems, examining five forecasting strategies for
multi-step forecasting: One-Step-Ahead, Recursive, Direct, Multi-Input Multi-Output
(MIMO), and Multi-Input Several Multi-Output (MISMO) strategies. Our findings indi-
cate that these models consistently struggle with accumulated errors under the Recursive
strategy, hindering their ability to execute actual multi-step forecasting tasks. Neverthe-
less, combining them thoughtfully with MIMO/MISMO strategies can mitigate this issue,
thus enabling one-step-ahead deep learning models for multi-step forecasting.

Furthermore, we proposed the Rankformer, a new Transformer-based model for the
TSF problem, which leverages the rank correlation function and a decomposition archi-
tecture for long-term TSF tasks. We also proposed the STLformer, an advanced iteration
of the Rankformer that employs the STL decomposition to enhance forecasting perfor-
mance. Notably, both the Rankformer and STLformer outperformed four state-of-the-art
Transformers and two RNN models across multiple datasets and forecasting horizons.

Product Delivery

Additionally, we designed a prototype web application for ATTILA Gestion. Starting with
the introduction of functional requirements, we delved into a comprehensive presentation
of the application’s design. This includes the user interface, technology stack, architecture,
core functionalities, and integrated forecasting algorithms. Built on a web-based user
interface using Python and several supporting libraries like Flask for the web framework,
Bootstrap for the front end, and Plotly for visualization, the application adheres to an
MVC design pattern. This design enables convenient maintenance and expansion of the
application. The application is containerized using Docker for user-friendly deployment
and execution on any compatible machine with a singular command, simplifying both
its use and upkeep. It also offers a GUI that allows users to interact with the models
and visualize the outcomes seamlessly. It is also deployable and extensible to ATTILA’s
existing infrastructure. The application is currently in the testing phase and will be
deployed in the near future with more features and models integrated.

8.2 Challenges, Open Problems, and Future Perspec-
tives

This section presents several research challenges and open problems that can be considered
for future TSF problems research. They are data, model, and task requirements, with
possible solutions discussed in the following subsections.

117

8.2. CHALLENGES, OPEN PROBLEMS, AND FUTURE PERSPECTIVES

8.2.1 Data Requirements

Time series data can present different characteristics to which TSF models should adapt.
We here present four main types of time series data characteristics that can pose challenges
for TSF models: (i) non-stationarity; (ii) multivariate and high-dimensional time series;
(iii) rare events, missing values, and anomalies; and (iv) hierarchical and grouped time
series.

Non-stationarity

Real-world time series data often exhibit non-stationary behavior, with changing patterns,
trends, and seasonality over time [1], [14], [125]–[127]. Meanwhile, for many of the time
series models, the model assumptions are violated when non-stationary data is used. This
leads to the estimators no longer having nice properties such as asymptotic normality and
sometimes even consistency, which limits their applicability in many scenarios.

For econometric models, (S)ARIMA and ETS [110] can model non-stationarity series,
but they have a linearity assumption and a fixed model structure. The lack of support
for multivariate and missing data also limits their applicability. Other models like cointe-
gration models [128], VAR models [110], Fractionally Integrated Models [129], [130], and
GARCH models [131] can also model non-stationary series. However, they are limited
either by their assumptions, e.g., linear relationships and conditional normality, or by
their computational complexity and estimation difficulties.

In recent years, deep models have shown promising results in various aspects, yet
they are also limited in their ability to model non-stationary time series. These mod-
els are based on statistics, which are exactly what changes in non-stationary time series
data, making the problem even more intractable. Most of the solutions for deep mod-
els proceed with stationarization as a preprocessing step, such as Adaptive Norm [132],
RevIN [133], and DAIN [134]. Liu et al. [76] proposed Non-Stationary Transformer to
solve this problem with Series Stationarization and De-stationary Attention but still as-
sumes a linear activation condition. Except for the Non-Stationary Transformer, to the
best of our knowledge, we are not aware of any other deep models that can directly model
non-stationary time series data.

As some econometric models exhibit good performance in modeling non-stationary
time series, it is worth exploring how to combine the advantages of econometric models
and deep models to model non-stationary time series data.

Multivariate and high-dimensional time series

Many real-world applications involve multivariate time series (MTS) with complex depen-
dencies among variables. While many models have been proposed to model MTS, they
also have various limitations.

VAR models are the most widely used models for econometric models for MTS. Vector
Error Correction Models (VECMs) [135] enables VAR for non-stationary time series. Both
VAR and VECMs assume linear relationships. VECMs also require cointegrated series,
which can be challenging to test and establish in practice. Multivariate GARCH [136]
extends GARCH to a multivariate setting but can be computationally demanding, espe-
cially when the number of variables is large. They also focus primarily on the conditional

118

8.2. CHALLENGES, OPEN PROBLEMS, AND FUTURE PERSPECTIVES

covariance structure and may not capture other forms of non-linear dependence. Panel
data models [137] are designed to handle data that combines both cross-sectional and time
series dimensions but require the assumption of a specific structure for the unobserved
heterogeneity across cross-sectional units, which may not always hold in practice.

Most deep models can handle multivariate data by design, but they also come with
limitations of their own. Due to error accumulation, deep models may struggle to produce
accurate long-term forecasts in a multi-step-ahead setting. They do not typically offer
built-in variable selection mechanisms, which can lead to poor performance if irrelevant
variables are included. While DL models can capture non-linear relationships, they may
struggle to model complex interdependencies between variables in MTS. When recurrent
models such as LSTMs and GRUs are employed, they can limit parallelization and lead
to slow training and inference times, especially when applied to large-scale MTS data.

To sum up, developing models that can efficiently capture these dependencies and
scale with the increasing dimensionality of the data is still an ongoing challenge.

Missing values, rare events, and anomalies

Time series data often contain missing values, rare events, or anomalies that can sig-
nificantly impact forecasting accuracy. Although many different techniques have been
proposed to address these issues, they are still open problems.

Econometric models typically require complete data and are not designed to handle
missing values. Some techniques and statistical methods, such as imputation and deletion,
may help but can also introduce bias and a loss of information. In addition, econometric
models typically focus on understanding and forecasting the underlying structure and
relationships in the data rather than explicitly addressing rare events and anomalies,
which can lead to poor performance in these scenarios.

DL models are increasingly designed to deal with missing data and anomalies in recent
years, such as imputation with autoencoders and sequence-sequence models [138]. Most
deep models can be used for imputing missing values or detecting anomalies by learning
the underlying patterns and structure. Nonetheless, these deep learning approaches are
not specifically designed for handling missing rare events, values, and anomalies. Some
models can also individually handle missing values, rare events, or anomalies, e.g., Ro-
bustSTL [29] and RobustTAD [11].

To the best of our knowledge, no model can handle missing values, rare events, and
anomalies simultaneously, leaving an open problem and an area of active research.

8.2.2 Model Requirements

Model interpretability and explainability

While being emphasized on their performance, most DL models, not limited to TSF
problems, are considered “black boxes” due to their complex inner workings.

Bringing interpretability to ML is not a new idea [139]–[141], and many TS models
have integrated interpretability by design. Lundberg and Lee [142] presented a unified
framework for interpreting predictions called SHAP that show improved computational
performance and/or better consistency with human intuition. Assaf and Schumann [143]
and Assaf et al. [144] demonstrated that CNN could be used for explaining predictions

119

8.2. CHALLENGES, OPEN PROBLEMS, AND FUTURE PERSPECTIVES

of MTS data and then proposed MTEX-CNN that can simultaneously visualize the net-
work’s attention over both time and feature dimensions. Wang et al. [145] proposed
an adversarially regularized CNN for shapelet-based TS classification. Fauvel, Masson,
and Fromont [146] presented a performance-explainability framework to benchmark ML
methods for MTS classification.

However, most of these models are designed for TS classification or problems from
other domains, e.g., image, and there is still a growing need for models that are not only
accurate but also interpretable and explainable for TSF problems.

Model selection and hyperparameter tuning

Choosing the best model and tuning its hyperparameters for a specific time series problem
can be challenging and time-consuming.

Hyndman and Khandakar [17] developed the well-known forecast package for R lan-
guage, which can automatically select the best model and tune its hyperparameters for
a given time series problem. Löning et al. [22] replicated some functionalities from the
forecast package for a Python implementation as the sktime library. Wang et al. [147]
combined auto-sklearn [148] for automated window selection and tsfresh [149] for au-
tomatic feature extraction to build an automated TSF pipeline. There are also some other
automatic ML/DL frameworks for TSF, such as Auto-TS1 and Auto-Pytorch-TS [150].

However, most of the implemented models are either econometric ones or may not
be able to handle large-scale time series data. The aforementioned AutoML/AutoDL
frameworks cannot always guarantee an optimized model and hyper-parameterization for
a given time series problem. Thus, developing automated or semi-automated techniques
for model selection and hyperparameter optimization is an ongoing area of research.

8.2.3 Task Requirements

Long-term forecasting

Accurately predicting long-term trends in time series data is difficult due to the accumu-
lation of errors over time and the inherent uncertainty in distant future predictions.

Most econometric methods are not designed for long-term forecasting, in which they
cannot include distant past observations in the model. In recent years, many DL models,
especially the Transformer-based models, have been proposed for long-term forecasting
problems, such as LSTNet [55], Informer [72], Autoformer [73], FEDformer [75], to name
a few. However, these models are either benchmarked on a small number of ideal standard
datasets or do not accept short-term input, i.e., they require large amounts of training
data.

Although there are already many models for long-term forecasting, there is still a need
for models that can handle short-term input and perform practically well on real-world
datasets.

1https://github.com/AutoViML/Auto_TS

120

https://github.com/AutoViML/Auto_TS

8.2. CHALLENGES, OPEN PROBLEMS, AND FUTURE PERSPECTIVES

Online forecasting and continual learning

In many real-world scenarios, time series data is a continuous input, which is more gen-
erally known as data stream, and models must adapt to new data simultaneously. This is
known as online forecasting [151].

Much research has been conducted on this topic. Liu et al. [152] proposed an online
ARIMA method for TSF tasks by reformulating the ARIMA model into a full information
online optimization task. Gultekin and Paisley [153] considered the TSF problem that
can be modeled as matrices and use low-rank matrix factorization for predicting future
values. Matsubara and Sakurai [154] proposed RegimeCast for co-evolving TS streams,
but it handles only the sudden discontinuity (regime shifts) rather than gradual shifts.
Boulegane, Bifet, and Madhusudan [155] presented Streaming-ADE and dynamically up-
dated the base models when concept drift was detected. Zuo, Zeitouni, and Taher [156]
adopted an incremental shapelet extraction for stable concepts and an adjusted concept
drift detection method for unstable concepts for TS classification problems.

Nonetheless, to the best of our knowledge, there is very little research on online fore-
casting for deep models. Developing efficient online learning algorithms for TSF is still a
critical challenge.

Uncertainty quantification

Quantifying the uncertainty associated with forecasts is crucial in many applications, as
it helps users make more informed decisions [157]. Wang et al. [158] proposed a deep
uncertainty quantification by simultaneously implementing single-value forecasting and
uncertainty quantification for weather forecasting tasks. Cui, Hu, and Zhu [159] used
the maximum mean discrepancy for a calibrated regression to provide well-calibrated and
sharp prediction intervals.

However, most of the research dedicated to uncertainty quantification is designed
for image processing and computer vision tasks. Very little research has been done on
uncertainty quantification for TSF problems. Developing methods for reliable uncertainty
quantification in TSF remains an open problem.

8.2.4 Others

Evaluation metrics and benchmarking

Performance comparisons among different models can be challenging due to the variety
of evaluation metrics and benchmarks used in the literature.

The Mean Absolute Percentage Error (MAPE) is one of the most widely used mea-
sures of forecasting accuracy. Another widely used one is the symmetric Mean Absolute
Percentage Error (sMAPE). Nonetheless, both MAPE and sMAPE can produce infinite
or undefined values when the actual and/or the forecasted values are zero [99]. Hyndman
and Koehler [100] proposed the Mean Absolute Scaled Error (MASE). However, it can
still be dominated by one large erroring value.

Kim and Kim [160] proposed in 2016 the Mean Arctangent Absolute Percentage Error
(MAAPE) to overcome the problem of division by zero fundamentally using bounded

121

8.2. CHALLENGES, OPEN PROBLEMS, AND FUTURE PERSPECTIVES

influences for outliers. It is defined as follows:

MAAPE =
1

h

n+h∑
t=n+1

arctan
(∣∣∣∣etyt

∣∣∣∣) ,

where et = yt − ŷt. yt is the actual value at time t and ŷt is the forecast value at time t.
n is the number of data points available in-sample, and h is the forecast horizon.

Chen, Twycross, and Garibaldi [161] invented the Unscaled Mean Bounded Relative
Absolute Error (UMBRAE), a scale-independent, outlier-resistant, and more interpretable
error measure. The definition of UMBRAE is as follows:

UMBRAE =

∑n+h
t=n+1

|et|
|et|+|e∗t |

h−
∑n+h

t=n+1
|et|

|et|+|e∗t |

,

where e∗t is the error of a benchmark model, e.g., the naïve model.
Establishing standardized evaluation protocols and benchmarks can help facilitate

model comparison and drive the development of better forecasting models.

Stones from other hills

As an old Chinese proverb goes, “Stones from other hills may serve to polish the jade
of this one”. Some of these problems in one certain requirement can also be attributed
to other requirements and can also correlate with other problems. For example, one can
very often have to deal with non-stationarity in the data and/or incorporate rare events
when performing long-term forecasting tasks. These problems can also be correlated
with other research areas, such as computer vision, natural language processing, and
speech recognition. Therefore, we can also draw inspiration from these fields to tackle the
challenges in TSF.

122

Bibliography

[1] R. S. Tsay, Analysis of Financial Time Series, 3rd ed. John Wiley & Sons, 2010.

[2] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial time series fore-
casting with deep learning : A systematic literature review: 2005–2019,” Appl. Soft
Comput., vol. 90, p. 106 181, 2020.

[3] L. Longo, M. Riccaboni, and A. Rungi, “A neural network ensemble approach for
GDP forecasting,” J. Econ. Dyn. Control, vol. 134, p. 104 278, 2022.

[4] A. Zeroual et al., “Deep learning methods for forecasting COVID-19 time-Series
data: A Comparative study,” Chaos Solit. Fractals, vol. 140, p. 110 121, 2020.

[5] H. Qi et al., “COVID-19 transmission in Mainland China is associated with temper-
ature and humidity: A time-series analysis,” Sci. Total Environ., vol. 728, p. 138 778,
2020.

[6] H. Li et al., “Air pollution and temperature are associated with increased COVID-
19 incidence: A time series study,” Int. J. Infect. Dis., vol. 97, pp. 278–282, 2020.

[7] X. Shi et al., “Convolutional LSTM Network: A Machine Learning Approach for
Precipitation Nowcasting,” in Proc. NeurIPS, 2015.

[8] J. M. Rožanec, B. Fortuna, and D. Mladenić, “Reframing Demand Forecasting: A
Two-Fold Approach for Lumpy and Intermittent Demand,” Sustainability, vol. 14,
no. 15, p. 9295, 2022.

[9] J. Zuo et al., “Graph convolutional networks for traffic forecasting with missing
values,” Data. Min. Knowl. Disc., vol. 37, no. 2, pp. 913–947, 2023.

[10] P. Gloaguen et al., “Scalable clustering of segmented trajectories within a contin-
uous time framework: Application to maritime traffic data,” Mach. Learn., 2021,
early access.

[11] J. Gao et al., “RobustTAD: Robust Time Series Anomaly Detection via Decom-
position and Convolutional Neural Networks,” in Proc. MileTS, 2020.

[12] H. Akaike, “A new look at the statistical model identification,” IEEE Trans. Autom.
Control, vol. 19, no. 6, pp. 716–723, 1974.

[13] G. Schwarz, “Estimating the Dimension of a Model,” Ann. Stat., vol. 6, no. 2,
pp. 461–464, 1978.

[14] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice,
3rd ed. OTexts, 2021.

[15] S. Seabold and J. Perktold, “Statsmodels: Econometric and statistical modeling
with python,” in Proc. SCIPY, 2010.

123

BIBLIOGRAPHY

[16] T. Smith et al. “Pmdarima: ARIMA estimators for Python.” (2017), [Online]. Avail-
able: http://alkaline-ml.com/pmdarima/.

[17] R. J. Hyndman and Y. Khandakar, “Automatic Time Series Forecasting: The fore-
cast Package for R,” J. Stat. Soft., vol. 27, no. 3, pp. 1–22, 2008.

[18] C. C. Holt, “Forecasting seasonals and trends by exponentially weighted moving
averages,” Int. J. Forecast., vol. 20, no. 1, pp. 5–10, 2004.

[19] E. S. Gardner and E. Mckenzie, “Forecasting Trends in Time Series,” Manage. Sci.,
vol. 31, no. 10, pp. 1237–1246, 1985.

[20] P. R. Winters, “Forecasting sales by exponentially weighted moving averages,”
Manage. Sci., vol. 6, no. 3, pp. 324–342, 1960.

[21] R. J. Hyndman et al., Forecasting with Exponential Smoothing. Springer-Verlag
Berlin Heidelberg, 2008.

[22] M. Löning et al., “Sktime: A unified interface for machine learning with time series,”
in Proc. NeurIPS, 2019.

[23] H. Lütkepohl, New Introduction to Multiple Time Series Analysis, 1. ed., corr. 2.
print. Springer, 2007.

[24] B. Pfaff, “VAR, SVAR and SVEC Models: Implementation Within R Package vars,”
J. Stat. Softw., vol. 27, pp. 1–32, 2008.

[25] R. B. Cleveland et al., “A Seasonal-Trend Decomposition Procedure Based on
Loess,” J. Off. Stat., vol. 6, no. 1, pp. 3–73, 1990.

[26] W. S. Cleveland, “Robust Locally Weighted Regression and Smoothing Scatter-
plots,” J. Am. Stat. Assoc., vol. 74, no. 368, pp. 829–836, 1979.

[27] G. E. P. Box and D. R. Cox, “An Analysis of Transformations,” J. R. Stat. Soc.,
A: Stat. Soc., vol. 26, no. 2, pp. 211–252, 1964.

[28] K. Bandara, R. Hyndman, and C. Bergmeir, “MSTL: A Seasonal-Trend Decompo-
sition Algorithm for Time Series with Multiple Seasonal Patterns,” Int. J. Oper.
Res., vol. 1, no. 1, 2022.

[29] Q. Wen et al., “RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm
for Long Time Series,” in Proc. AAAI, 2019.

[30] Q. Wen et al., “Fast RobustSTL: Efficient and Robust Seasonal-Trend Decompo-
sition for Time Series with Complex Patterns,” in Proc. ACM SIGKDD, 2020.

[31] X. Wang, K. Smith, and R. Hyndman, “Characteristic-Based Clustering for Time
Series Data,” Data Min. Knowl. Disc., vol. 13, no. 3, pp. 335–364, 2006.

[32] V. Assimakopoulos and K. Nikolopoulos, “The theta model: A decomposition ap-
proach to forecasting,” Int. J. Forecast., vol. 16, no. 4, pp. 521–530, 2000.

[33] K. Nikolopoulos et al., “The theta model: An essential forecasting tool for supply
chain planning,” in Proc. ICAR, 2011.

[34] R. J. Hyndman, “A brief history of forecasting competitions,” Int. J. Forecast., M4
Competition, vol. 36, no. 1, pp. 7–14, 2020.

124

http://alkaline-ml.com/pmdarima/

BIBLIOGRAPHY

[35] E. Spiliotis, V. Assimakopoulos, and S. Makridakis, “Generalizing the Theta method
for automatic forecasting,” Eur. J. Oper. Res., vol. 284, no. 2, pp. 550–558, 2020.

[36] F. Petropoulos and K. Nikolopoulos, “Optimizing Theta Model for Monthly Data:”
in Proc. ICAART, 2013.

[37] K. Nikolopoulos and D. D. Thomakos, Forecasting with the Theta Method: Theory
and Applications. Wiley, 2019.

[38] J. A. Fiorucci et al., “Models for optimising the theta method and their relationship
to state space models,” Int. J. Forecast., vol. 32, no. 4, pp. 1151–1161, 2016.

[39] R. J. Hyndman and B. Billah, “Unmasking the Theta method,” Int. J. Forecast.,
vol. 19, no. 2, pp. 287–290, 2003.

[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016.

[41] J. B. Yang et al., “Deep convolutional neural networks on multichannel time series
for human activity recognition,” in Proc. IJCAI, 2015.

[42] R. Wen et al., “A Multi-Horizon Quantile Recurrent Forecaster,” in Proc. NeurIPS,
2018.

[43] R. Sen, H.-F. Yu, and I. S. Dhillon, “Think Globally, Act Locally: A Deep Neu-
ral Network Approach to High-Dimensional Time Series Forecasting,” in Proc.
NeurIPS, vol. 32, 2019.

[44] M. Liu et al., “Time Series is a Special Sequence: Forecasting with Sample Convo-
lution and Interaction,” in Proc. NeurIPS, 2022.

[45] P. Esling and C. Agon, “Time-series data mining,” ACM Comput. Surv., vol. 45,
no. 1, 12:1–12:34, 2017.

[46] H. I. Fawaz et al., “Deep learning for time series classification: A review,” Data
Min. Knowl. Disc., vol. 33, no. 4, pp. 917–963, 2019.

[47] V. Kuznetsov and Z. Mariet, “Foundations of Sequence-to-Sequence Modeling for
Time Series,” in Proc. AISTATS, 2019.

[48] K. Benidis et al., “Deep Learning for Time Series Forecasting: Tutorial and Liter-
ature Survey,” ACM Comput. Surv., vol. 55, no. 6, 121:1–121:36, 2022.

[49] H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent Neural Networks for
Time Series Forecasting: Current status and future directions,” Int. J. Forecast.,
vol. 37, no. 1, pp. 388–427, 2021.

[50] B. Lim and S. Zohren, “Time Series Forecasting With Deep Learning: A Survey,”
Phil. Trans. R. Soc. A., vol. 379, no. 2194, p. 20 200 209, 2021.

[51] J. F. Torres et al., “Deep Learning for Time Series Forecasting: A Survey,” Big
Data, vol. 9, no. 1, pp. 3–21, 2021.

[52] S. Makridakis et al., “Statistical, machine learning and deep learning forecasting
methods: Comparisons and ways forward,” J. Oper. Res. Soc., pp. 1–20, 2022.

[53] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly
Learning to Align and Translate,” in Proc. ICLR, 2015.

125

BIBLIOGRAPHY

[54] Y. Qin et al., “A Dual-Stage Attention-Based Recurrent Neural Network for Time
Series Prediction,” in Proc. IJCAI, 2017.

[55] G. Lai et al., “Modeling Long- and Short-Term Temporal Patterns with Deep
Neural Networks,” in Proc. ACM SIGIR, 2018.

[56] S.-Y. Shih, F.-K. Sun, and H.-y. Lee, “Temporal pattern attention for multivariate
time series forecasting,” Mach. Learn., vol. 108, no. 8-9, pp. 1421–1441, 2019.

[57] Y. Wang et al., “Deep Factors for Forecasting,” in Proc. ICML, 2019.

[58] D. S. De O. Santos Júnior, J. F. L. De Oliveira, and P. S. G. De Mattos Neto, “An
intelligent hybridization of ARIMA with machine learning models for time series
forecasting,” Knowl.-Based Syst., vol. 175, pp. 72–86, 2019.

[59] S. Smyl, “A hybrid method of exponential smoothing and recurrent neural networks
for time series forecasting,” Int. J. Forecast., p. 11, 2020.

[60] G. Dudek, P. Pełka, and S. Smyl, “A Hybrid Residual Dilated LSTM and Expo-
nential Smoothing Model for Midterm Electric Load Forecasting,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 33, no. 7, pp. 1–13, 2021.

[61] F.-K. Sun, C. I. Lang, and D. S. Boning, “Adjusting for Autocorrelated Errors in
Neural Networks for Time Series Regression and Forecasting,” in Proc. NeurIPS,
2021.

[62] Y. Sun et al., “Memory Augmented State Space Model for Time Series Forecast-
ing,” in Proc. IJCAI, 2022.

[63] A. Vaswani et al., “Attention is All you Need,” in Proc. NeurIPS, 2017.

[64] J. Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding,” in Proc. NAACL, 2019.

[65] T. B. Brown et al., “Language Models are Few-Shot Learners,” in Proc. NeurIPS,
2020.

[66] A. Dosovitskiy et al., “An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale,” in Proc. ICLR, 2021.

[67] N. Wu et al., “Deep Transformer Models for Time Series Forecasting: The Influenza
Prevalence Case,” in Proc. ICML, 2020.

[68] B. Lim et al., “Temporal Fusion Transformers for interpretable multi-horizon time
series forecasting,” Int. J. Forecast., vol. 37, no. 4, pp. 1748–1764, 2021.

[69] S. Li et al., “Enhancing the Locality and Breaking the Memory Bottleneck of
Transformer on Time Series Forecasting,” in Proc. NeurIPS, 2019.

[70] S. Wu et al., “Adversarial Sparse Transformer for Time Series Forecasting,” in Proc.
NeurIPS, vol. 33, 2020.

[71] Y. Lin, I. Koprinska, and M. Rana, “SSDNet: State Space Decomposition Neural
Network for Time Series Forecasting,” in Proc. ICDM, 2021.

[72] H. Zhou et al., “Informer: Beyond Efficient Transformer for Long Sequence Time-
Series Forecasting,” in Proc. AAAI, 2021.

126

BIBLIOGRAPHY

[73] H. Wu et al., “Autoformer: Decomposition Transformers with Auto-Correlation for
Long-Term Series Forecasting,” in Proc. NeurIPS, 2021.

[74] S. Liu et al., “Pyraformer: Low-complexity pyramidal attention for long-range time
series modeling and forecasting,” in Proc. ICLR, 2022.

[75] T. Zhou et al., “FEDformer: Frequency Enhanced Decomposed Transformer for
Long-term Series Forecasting,” in Proc. ICML, 2022.

[76] Y. Liu et al., “Non-stationary Transformers: Exploring the Stationarity in Time
Series Forecasting,” in Proc. NeurIPS, 2022.

[77] Y. Nie et al., “A Time Series is Worth 64 Words:Long-Term Forecasting with
Transformers,” in Proc. ICLR, 2023.

[78] Y. Zhang and J. Yan, “CrossFormer: Transformer Utilizing Cross-Dimension De-
pendency for Multivariate Time Series Forecasting,” in Proc. ICLR, 2023.

[79] G. Woo et al., “ETSformer: Exponential Smoothing Transformers for Time-series
Forecasting,” in Proc. ICLR, 2023.

[80] A. Shabani et al., “Scaleformer: Iterative Multi-scale Refining Transformers for
Time Series Forecasting,” in Proc. ICLR, 2023.

[81] Z. Ouyang, P. Ravier, and M. Jabloun, “STL Decomposition of Time Series Can
Benefit Forecasting Done by Statistical Methods but Not by Machine Learning
Ones,” Eng. Proc., vol. 5, no. 1, p. 42, 2021.

[82] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection,”
in Proc. NeurIPS, 2013.

[83] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks (Studies
in Computational Intelligence). Springer Berlin Heidelberg, 2012, vol. 385.

[84] E. Yurtsever et al., “A survey of autonomous driving: Common practices and
emerging technologies,” IEEE Access, vol. 8, pp. 58 443–58 469, 2020.

[85] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Proc. NeurIPS, 2012.

[86] G. Hinton et al., “Deep neural networks for acoustic modeling in speech recogni-
tion: The shared views of four research groups,” IEEE Signal processing magazine,
vol. 29, no. 6, 2012.

[87] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural
Networks,” in Proc. NeurIPS, 2014.

[88] G. P. Zhang, “Time series forecasting using a hybrid ARIMA and neural network
model,” Neurocomputing, vol. 50, pp. 59–175, 2003.

[89] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Science & Business Media, 2009.

[90] N. K. Ahmed et al., “An empirical comparison of machine learning models for time
series forecasting,” Econom. Rev., vol. 29, no. 5, pp. 594–621, 2010.

[91] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and Machine Learn-
ing forecasting methods: Concerns and ways forward,” PLOS ONE, vol. 13, no. 3,
e0194889, 2018.

127

BIBLIOGRAPHY

[92] M. Theodosiou, “Forecasting monthly and quarterly time series using STL decom-
position,” Int. J. Forecast., vol. 27, no. 4, pp. 1178–1195, 2011.

[93] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The M4 Competition: 100,000
time series and 61 forecasting methods,” Int. J. Forecast., vol. 36, no. 1, pp. 54–74,
2020.

[94] G. Bontempi, S. B. Taieb, and Y.-A. Le Borgne, “Machine learning strategies for
time series forecasting,” in Proc. eBISS, 2012.

[95] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.
[96] S. Roberts et al., “Gaussian processes for time-series modelling,” Phil. Trans. R.

Soc. A., vol. 371, no. 1984, p. 20 110 550, 2013.
[97] R Core Team, R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, 2020.
[98] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach. Learn.

Res., vol. 12, pp. 2825–2830, 2011.
[99] S. Makridakis, “Accuracy measures: Theoretical and practical concerns,” Int. J.

Forecast., vol. 9, no. 4, pp. 527–529, 1993.
[100] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accuracy,”

Int. J. Forecast., vol. 22, pp. 679–688, 2006.
[101] Z. Ouyang, P. Ravier, and M. Jabloun, “Are Deep Learning Models Practically

Good as Promised? A Strategic Comparison of Deep Learning Models for Time
Series Forecasting,” in Proc. EUSIPCO, 2022.

[102] A. Sorjamaa et al., “Methodology for long-term prediction of time series,” Neuro-
computing, vol. 70, no. 16-18, pp. 2861–2869, 2007.

[103] G. Bontempi, “Long term time series prediction with multi-input multi-output
local learning,” in Proc. ESTSP, 2008.

[104] H. Cheng et al., “Multistep-Ahead Time Series Prediction,” in Proc. PAKDD, 2006.
[105] S. B. Taieb et al., “Long-term prediction of time series by combining direct and

mimo strategies,” in Proc. JICNN, 2009.
[106] K. Cho et al., “On the properties of neural machine translation: Encoder–decoder

approaches,” in Proc. SSST, 2014.
[107] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” in Proc.

ICLR, 2014.
[108] Z. Ouyang, M. Jabloun, and P. Ravier, “Rankformer: Leveraging Rank Correla-

tion for Transformer-based Time Series Forecasting,” in Proc. IEEE SSP, 2023.
[109] Z. Ouyang, M. Jabloun, and P. Ravier, “STLformer: Exploit STL decomposition

and Rank Correlation for Time Series Forecasting,” in Proc. EUSIPCO, 2023.
[110] G. E. P. Box et al., Time Series Analysis: Forecasting and Control, 5th ed. John

Wiley & Sons, Inc., 2015.
[111] Y. Yaslan and B. Bican, “Empirical mode decomposition based denoising method

with support vector regression for time series prediction: A case study for electricity
load forecasting,” Measurement, vol. 103, pp. 52–61, 2017.

128

BIBLIOGRAPHY

[112] H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent Neural Networks for
Time Series Forecasting: Current status and future directions,” Int. J. Forecast.,
vol. 37, no. 1, pp. 388–427, 2021.

[113] D. Salinas et al., “DeepAR: Probabilistic forecasting with autoregressive recurrent
networks,” Int. J. Forecast., vol. 36, no. 3, pp. 1181–1191, 2020.

[114] S. Bai, J. Z. Kolter, and V. Koltun, “An Empirical Evaluation of Generic Convo-
lutional and Recurrent Networks for Sequence Modeling,” in Proc. ICLR, 2018.

[115] N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The Efficient Transformer,”
Proc. ICLR, 2020.

[116] C. Spearman, “The Proof and Measurement of Association between Two Things,”
Am. J. Psychol., vol. 15, no. 1, pp. 72–101, 1904.

[117] M. Blondel et al., “Fast Differentiable Sorting and Ranking,” in Proc. ICML, 2020.

[118] R. F. Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the
Variance of United Kingdom Inflation,” Econometrica, vol. 50, no. 4, pp. 987–1007,
1982.

[119] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning
Library,” in Proc. NeurIPS, 2019.

[120] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.,
vol. 9, no. 8, pp. 1735–1780, 1997.

[121] W. McKinney, “Data Structures for Statistical Computing in Python,” in Proc.
SciPy, 2010.

[122] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no. 7825,
pp. 357–362, 2020.

[123] P. Virtanen et al., “SciPy 1.0: Fundamental algorithms for scientific computing in
Python,” Nat. Methods, vol. 17, no. 3, pp. 261–272, 2020.

[124] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proc.
ACM SIGKDD, 2016.

[125] M. B. Priestley, “Evolutionary Spectra and Non-Stationary Processes,” J. R. Stat.
Soc. Ser. B Methodol., vol. 27, no. 2, pp. 204–229, 1965.

[126] M. B. Priestley and T. S. Rao, “A Test for Non-Stationarity of Time-Series,” J. R.
Stat. Soc. Ser. B Methodol., vol. 31, no. 1, pp. 140–149, 1969.

[127] R. Dahlhaus, “Fitting time series models to nonstationary processes,” Ann. Stat.,
vol. 25, no. 1, pp. 1–37, 1997.

[128] R. F. Engle and C. W. J. Granger, “Co-Integration and Error Correction: Rep-
resentation, Estimation, and Testing,” Econometrica, vol. 55, no. 2, pp. 251–276,
1987.

[129] C. W. J. Granger and R. Joyeux, “An Introduction to Long-Memory Time Series
Models and Fractional Differencing,” J. Time Ser. Anal., vol. 1, no. 1, pp. 15–29,
1980.

[130] C. W. J. Granger, “Long memory relationships and the aggregation of dynamic
models,” J. Econom., vol. 14, no. 2, pp. 227–238, 1980.

129

BIBLIOGRAPHY

[131] T. Bollerslev, “Generalized autoregressive conditional heteroskedasticity,” J. Econom.,
vol. 31, no. 3, pp. 307–327, 1986.

[132] E. Ogasawara et al., “Adaptive Normalization: A novel data normalization ap-
proach for non-stationary time series,” in Proc. IJCNN, 2010.

[133] T. Kim et al., “Reversible Instance Normalization for Accurate Time-Series Fore-
casting Against Distribution Shift,” in Proc. ICLR, 2022.

[134] N. Passalis et al., “Deep Adaptive Input Normalization for Time Series Forecast-
ing,” IEEE Trans. Neural Netw. Learning Syst., vol. 31, no. 9, pp. 3760–3765,
2020.

[135] S. Johansen, “Statistical analysis of cointegration vectors,” J. Econ. Dyn. Control,
vol. 12, no. 2-3, pp. 231–254, 1988.

[136] L. Bauwens, S. Laurent, and J. V. K. Rombouts, “Multivariate GARCH models:
A survey,” J. Appl. Econ., vol. 21, no. 1, pp. 79–109, 2006.

[137] J. M. Wooldridge, Econometric Analysis of Cross Section and Panel Data. The
MIT Press, 2010.

[138] G. Boquet et al., “A variational autoencoder solution for road traffic forecast-
ing systems: Missing data imputation, dimension reduction, model selection and
anomaly detection,” Transp. Res. Part C Emerg. Technol., vol. 115, p. 102 622,
2020.

[139] A. Bibal and B. Frénay, “Interpretability of Machine Learning Models and Repre-
sentations: An Introduction,” in Proc. ESANN, 2016.

[140] R. Guidotti et al., “A Survey of Methods for Explaining Black Box Models,” ACM
Comput. Surv., vol. 51, no. 5, pp. 1–42, 2019.

[141] Y. Wang, “Interpretable time series classification,” Ph.D. dissertation, University
of Rennes 1, 2021, 116 pp.

[142] S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predic-
tions,” in Proc. NeurIPS, 2017.

[143] R. Assaf and A. Schumann, “Explainable Deep Neural Networks for Multivariate
Time Series Predictions,” in Proc. IJCAI, 2019.

[144] R. Assaf et al., “MTEX-CNN: Multivariate Time Series EXplanations for Predic-
tions with Convolutional Neural Networks,” in Proc. ICDM, 2019.

[145] Y. Wang et al., “Adversarial Regularization for Explainable-by-Design Time Series
Classification,” in Proc. ICTAI, 2020.

[146] K. Fauvel, V. Masson, and É. Fromont, “A Performance-Explainability Framework
to Benchmark Machine Learning Methods: Application to Multivariate Time Series
Classifiers,” in Proc. IJCAI-PRICAI, 2021.

[147] C. Wang et al., “Towards Time-Series Feature Engineering in Automated Machine
Learning for Multi-Step-Ahead Forecasting,” Eng. Proc., vol. 18, no. 1, p. 17, 2022.

[148] M. Feurer et al., “Efficient and Robust Automated Machine Learning,” in Proc.
NeurIPS, 2015.

130

BIBLIOGRAPHY

[149] M. Christ et al., “Time Series FeatuRe Extraction on basis of Scalable Hypothesis
tests (tsfresh – A Python package),” Neurocomputing, vol. 307, pp. 72–77, 2018.

[150] D. Deng et al., “Efficient Automated Deep Learning for Time Series Forecasting,”
in Proc. ECML/PKDD, 2023.

[151] O. Anava et al., “Online Learning for Time Series Prediction,” in Proc. COTL,
2013.

[152] C. Liu et al., “Online ARIMA Algorithms for Time Series Prediction,” in Proc.
AAAI, 2016.

[153] S. Gultekin and J. Paisley, “Online Forecasting Matrix Factorization,” IEEE Trans.
Signal Process., vol. 67, no. 5, pp. 1223–1236, 2019.

[154] Y. Matsubara and Y. Sakurai, “Regime Shifts in Streams: Real-time Forecasting
of Co-evolving Time Sequences,” in Proc. ACM SIGKDD, 2016.

[155] D. Boulegane, A. Bifet, and G. Madhusudan, “Arbitrated Dynamic Ensemble with
Abstaining for Time-Series Forecasting on Data Streams,” in Proc. Big Data, 2019.

[156] J. Zuo, K. Zeitouni, and Y. Taher, “Incremental and Adaptive Feature Exploration
over Time Series Stream,” in Proc. Big Data, 2019.

[157] M. Abdar et al., “A review of uncertainty quantification in deep learning: Tech-
niques, applications and challenges,” Inf. Fusion, vol. 76, pp. 243–297, 2021.

[158] B. Wang et al., “Deep Uncertainty Quantification: A Machine Learning Approach
for Weather Forecasting,” in Proc. ACM SIGKDD, 2019.

[159] P. Cui, W. Hu, and J. Zhu, “Calibrated Reliable Regression using Maximum Mean
Discrepancy,” in Proc. NeurIPS, 2020.

[160] S. Kim and H. Kim, “A new metric of absolute percentage error for intermittent
demand forecasts,” Int. J. Forecast., vol. 32, no. 3, pp. 669–679, 2016.

[161] C. Chen, J. Twycross, and J. M. Garibaldi, “A new accuracy measure based on
bounded relative error for time series forecasting,” PLOS ONE, vol. 12, no. 3,
e0174202, 2017.

131

Zuokun OUYANG
Prédiction de Séries Temporelles : De l’Économétrie à

l’Apprentissage Profond

Résumé :
La prédiction des séries temporelles (TSF) est un problème fondamental dans de nom-
breux domaines, dont la finance, l’économie et la météorologie. Une prédiction précise
des valeurs futures d’une série temporelle peut fournir des informations précieuses sur le
processus sous-jacent, permettant une meilleure prise de décision et une planification plus
efficace.
Dans cette thèse, nous avons exploré en profondeur le problème de la TSF, apportant
plusieurs contributions dans les domaines économétriques et de l’apprentissage profond.
Notre exploration des méthodes de prédiction économétriques comprenait une revue ap-
profondie des techniques de pointe, y compris, mais sans s’y limiter, les modèles AutoRe-
gressive Integrated Moving Average (ARIMA), Exponential Smoothing State Space Model
(ETS) et Vector AutoRegressive (VAR), ainsi que leurs variations respectives. Nous nous
sommes également penchés sur les méthodes de décomposition des séries temporelles, y
compris la décomposition canonique et la décomposition saisonnière-tendance utilisant
LOESS (STL). De plus, nous discutons de la méthode Theta, une méthode de décom-
position pour l’analyse des séries temporelles. Cette revue complète a formé la base de
notre investigation expérimentale, où nous avons évalué la performance de ces techniques
de prédiction avec la décomposition STL comme étape de prétraitement en utilisant les
ensembles de données du M3-Competition.
Simultanément, notre enquête a parcouru le paysage complexe des modèles
d’apprentissage profond (DL) pour la TSF. Nous avons exploré des modèles clés tels que
les MLP, les CNN, les RNN et le mécanisme d’attention. Nous avons ensuite approfondi
les défis et les goulots d’étranglement inhérents à la TSF. Une vue d’ensemble détaillée
du modèle Transformer et de ses dérivés a fourni des informations sur leurs améliorations
par rapport au Transformer standard et à leurs précurseurs. Cela nous a amenés à évaluer
trois modèles d’apprentissage profond, DA-RNN, LSTNet et TPA-LSTM, pour les prob-
lèmes de prédiction multi-étapes de TSF. Nos résultats mettent en évidence les pièges
de certaines stratégies de prédiction multi-étapes, en particulier la stratégie Récursive, et
proposent une combinaison réfléchie de stratégies MIMO/MISMO comme solution. En
faisant progresser le domaine de la TSF, nous présentons deux nouveaux modèles basés
sur Transformer, Rankformer et STLformer, conçus pour les tâches de prédiction à long
terme de TSF en combinant les mesures économétriques avec des modèles profonds, dé-
montrant une performance supérieure par rapport aux modèles existants de pointe sur
plusieurs ensembles de données et horizons de prédiction.
Un autre aspect de notre contribution est une application web prototype qui démontre
pratiquement l’implémentation de nos modèles. L’application, développée avec Python
et plusieurs bibliothèques d’assistance telles que Flask, Bootstrap et Plotly, adhère à un
modèle de conception de type Modèle-Vue-Contrôleur (MVC), garantissant une mainte-
nance pratique et une expansion potentielle. De plus, l’application est conteneurisée à
l’aide de Docker, facilitant un déploiement et une exécution conviviaux sur n’importe
quelle machine compatible. L’application offre une interface utilisateur intuitive pour
interagir avec les modèles et visualiser les résultats. Cette application est actuellement en
phase de test et sera déployée dans un futur proche avec l’intégration de fonctionnalités
et de modèles supplémentaires.

Mots clés : Séries Temporelles, Prédiction, Econométrie, Apprentissage Profond, Trans-
former, Application Web

Time Series Forecasting: From Econometrics to Deep Learning

Abstract:
Time series forecasting (TSF) is a fundamental problem in various fields, including finance,
economics, and meteorology. An accurate prediction of future values of a time series can
provide valuable insights into the underlying process, enabling better decision-making and
planning.
In this thesis, we thoroughly explored the TSF problem, making several contributions in
both econometric and deep learning domains. Our exploration of econometric forecast-
ing methods included an in-depth review of state-of-the-art techniques, including but not
limited to AutoRegressive Integrated Moving Average (ARIMA), Exponential Smoothing
State Space Model (ETS), and Vector AutoRegressive (VAR) models, along with their
respective variations. We also delved into time series decomposition methods, includ-
ing canonical decomposition and Seasonal-Trend decomposition utilizing LOESS (STL).
In addition, we discuss the Theta method, a decomposition-based method for analyzing
time series. This comprehensive review formed the basis of our experimental investigation,
where we assessed the performance of these forecasting techniques with STL decomposi-
tion as a preprocessing step using the M3-Competition datasets.
Simultaneously, our investigation navigated the complex landscape of deep learning (DL)
models for TSF. We explored key models such as MLPs, CNNs, RNNs, and Attention
Mechanism. We then delved into the challenges and bottlenecks inherent to TSF. A
detailed overview of the Transformer model and its derivatives provided insights into
their enhancements over the standard Transformer and their precursors. This led us
to evaluate three deep learning models, DA-RNN, LSTNet, and TPA-LSTM, for multi-
step TSF problems. Our findings highlight the pitfalls of certain multi-step forecasting
strategies, particularly the Recursive strategy, and propose a thoughtful combination of
MIMO/MISMO strategies as a solution. Further advancing the TSF field, we introduce
two novel Transformer-based models, Rankformer and STLformer, designed for long-term
TSF tasks by combining the econometric measures with deep models, demonstrating su-
perior performance compared to existing state-of-the-art models across multiple datasets
and forecasting horizons.
Another aspect of our contribution is a prototype web application that practically
demonstrates our models’ implementation. The application, developed with Python
and several supporting libraries such as Flask, Bootstrap, and Plotly, adheres to a
Model-View-Controller (MVC) design pattern, ensuring convenient maintenance and po-
tential expansion. Additionally, the application is containerized using Docker, facilitating
user-friendly deployment and execution on any compatible machine. The application
offers an intuitive user interface for interacting with the models and visualizing outcomes.

Keywords: Time Series, Forecasting, Econometrics, Deep Learning, Transformer, Web
Application

PRISME Laboratoire
12 rue de Blois, 45100 Orléans, France

	Introduction
	Background
	Time Series
	Challenges for Time Series Forecasting

	General Objectives
	Thesis Description
	Thesis Outline
	List of Publications

	Appendix: Company Introduction
	Research Context in the Company
	The History of ATTILA
	Business Activities

	Econometric Time Series Forecasting
	Time Series Definition and Basics
	Autocovariance Function and Stationarity
	Autocorrelation and Partial Autocorrelation Function

	Econometric Time Series Forecasting
	AutoRegressive Integrated Moving Average
	Exponential Smoothing
	Multivariate Time Series and Vector AutoRegression

	Time Series Decomposition Prior to Forecasting
	Time Series Components
	Two Decomposition Methods of Time Series
	Theta Method

	Conclusions

	Deep Learning for Time Series Forecasting
	Traditional Deep Learning Models
	Econometric and ML Models' Bottlenecks
	MLPs, CNNs, RNNs, Attention Mechanism, and Hybrid Models

	Transformers for Time Series Forecasting
	Transformer Basic
	A gentle survey of Transformers for TSF tasks

	Conclusions

	STL decomposition prior to econometric and ML models
	Introduction
	Methods
	Benchmark Methods
	Decomposition Methods
	Econometric Methods
	Machine Learning Methods

	Experiments
	Dataset
	Pipeline for Machine Learning Methods
	Pipeline for Econometric Methods
	Implementation and Parameters Tuning
	Evaluation Metrics

	Results and Discussions
	Results
	Discussions

	Conclusions

	Deep learning with multi-step forecasting strategies
	Introduction
	Methods
	Multi-step Forecasting Strategies
	Deep Learning Models

	Experiment
	Datasets
	Parameter Settings and Evaluation Metric

	Results and Discussions
	Conclusions

	Deep Learning Transformer-based Forecasting
	Introduction
	Methods
	Rankformer/STLformer Architecture
	RankCorrelation Block
	Multi-Level Decomposition Block
	STL Decomposition Block

	Experiments
	Datasets
	Experimental Settings

	Results and Discussions
	Results of Rankformer
	Results of STLformer
	Complexity Analysis and Model Comparison

	Conclusion

	A Web Application Prototype
	Introduction
	The Prototype: A Web Application
	User Interface
	Technology Stack and Technical Architecture
	Core Functionalities and Algorithms
	Deployment and Maintenance

	Conclusion

	Conclusions and Outlook
	Summary of the Thesis
	Challenges, Open Problems, and Future Perspectives
	Data Requirements
	Model Requirements
	Task Requirements
	Others

	Bibliography

