
Proceeding Paper

STL Decomposition of Time Series Can Benefit Forecasting Done
by Statistical Methods but Not by Machine Learning Ones †

Zuokun Ouyang * , Philippe Ravier and Meryem Jabloun

����������
�������

Citation: Ouyang, Z.; Ravier, P.;

Jabloun, M. STL Decomposition of

Time Series Can Benefit Forecasting

Done by Statistical Methods but Not

by Machine Learning Ones. Eng. Proc.

2021, 5, 42. https://doi.org/10.3390/

engproc2021005042

Academic Editors: Ignacio Rojas,

Fernando Rojas, Luis Javier Herrera

and Hector Pomare

Published: 8 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Laboratoire Pluridisciplinaire de Recherche en Ingénierie des Systèmes, Mécanique, Energétique,
Université d’Orléans, 12 rue de Blois, 45067 Orléans, France; philippe.ravier@univ-orleans.fr (P.R.);
meryem.jabloun@univ-orleans.fr (M.J.)
* Correspondence: zuokun.ouyang@univ-orleans.fr
† Presented at the 7th International Conference on Time Series and Forecasting, Gran Canaria, Spain,

19–21 July 2021.

Abstract: This paper aims at comparing different forecasting strategies combined with the STL
decomposition method. STL is a versatile and robust time series decomposition method. The
forecasting strategies we consider are as follows: three statistical methods (ARIMA, ETS, and Theta),
five machine learning methods (KNN, SVR, CART, RF, and GP), and two versions of RNNs (CNN-
LSTM and ConvLSTM). We conduct the forecasting test on six horizons (1, 6, 12, 18, and 24 months).
Our results show that, when applied to monthly industrial M3 Competition data as a preprocessing
step, STL decomposition can benefit forecasting using statistical methods but harms the machine
learning ones. Moreover, the STL-Theta combination method displays the best forecasting results on
four over the five forecasting horizons.

Keywords: time series forecasting; ARIMA; ETS; Theta method; STL decomposition; machine
learning; RNN

1. Introduction

Time series forecasting is a subdomain of time series analysis in which the historical
measurements are modeled to describe the underlying characteristics of the observable
and extrapolated into the future [1].

For a few decades, the domain of time series analysis has been dominated by statistical
methodology. One of the most important and generally used models is the AutoRegressive
Integrated Moving Average (ARIMA), which can be quickly built thanks to the Box–Jenkins
methodology [2]. The ARIMA family has excellent flexibility for presenting varying time
series. Nevertheless, it has limits due to its assumption of linearity of the time series [1,3].

Another dominating and widely used statistical method is the ExponenTial Smoothing
(ETS) method, which was proposed in the 1950s [4–6]. It is often considered as an alternative
to the ARIMA models. While the ARIMA family develops a model where the prediction is
a weighted linear sum of recent past observations or lags, forecasts produced by ETS are
weighted averages of past observations, with the weights decaying exponentially as the
observations get older [7].

The M Competitions were initiated by professor Spyros Makridakis. There are dif-
ferent open competitions (M1–M5) dedicated to the performance comparison of different
forecasting methods [8]. Particularly, the Theta method had impressive success in the
M3 Competition and thus was used in the M4 Competition as a benchmark. It was first
proposed by Assimakopoulos et al. [9] and then extended to forecast multivariate macroe-
conomic and financial time series [10]. Hyndman demonstrated the Theta method applied
in the M3 Competition is equivalent to the simple exponential smoothing with a drift [11].

Time series can also have many underlying patterns, and decomposition can reveal
them by splitting a time series into several components. In our study, we focus on STL

Eng. Proc. 2021, 5, 42. https://doi.org/10.3390/engproc2021005042 https://www.mdpi.com/journal/engproc

https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-9728-5158
https://orcid.org/0000-0002-0925-6905
https://orcid.org/0000-0002-4824-4149
https://doi.org/10.3390/engproc2021005042
https://doi.org/10.3390/engproc2021005042
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/engproc2021005042
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2021005042?type=check_update&version=2

Eng. Proc. 2021, 5, 42 2 of 10

decomposition. STL stands for Seasonal-Trend decomposition using LOESS, where LOESS
is LOcal regrESSion, which was proposed by Robert et al. in 1990 [12], contributing to a
decomposition method robust to anomalies.

Artificial Intelligence (AI) has gained significant prominence over the last decade, es-
pecially in object recognition [13], natural language processing (NLP) [14], and autonomous
driving [15]. Convolutional Neural Networks (CNNs) have revolutionized the field of
computer vision [16]. Recurrent Neural Networks (RNNs) benefited from lots of NLP tasks,
such as machine translation [17] and speech recognition [18]. In the field of time series,
many machine learning methods such as support vector regression (SVR), neural networks,
classification and regression tree (CART), and k-nearest neighbor (kNN) regression were
proven able to model and forecast time series as well [19,20].

There are some discussions on comparing the performance of different forecasting ap-
proaches. Ahmed et al. [21] performed an empirical comparison of eight machine learning
models over the 1045 monthly series involved in the M3 Competition, but only one-
step-ahead forecasting was considered. Makrirdakis et al. did some similar works [22],
comparing statistical and machine learning methods, but without any decomposition
method being introduced as a preprocessing step. Using the M1 Competition dataset,
Theodosieu [23] compared a new STL-based method with some common benchmarks but
without combining STL with them, and only up to an 18-month forecasting was considered.

As the preprocessing step often plays an integral part in prediction tasks and substan-
tially impacts the results, we propose to conduct a new comparison work to identify its
benefit: (1) by exploring STL decomposition when using it as a preprocessing step for all
methods; and (2) by considering multiple forecasting horizons.

The rest of this paper is organized as follows. In the next section, we present a concise
description of all the involved models and the decomposition methods. Section 3 presents
how we organized and conducted the experiments. In Section 4, we present the comparison
results and discussions based on these results. Section 5 gives the conclusion.

2. Methods

Although there are many different variations of each model, we considered only the
primitive versions of each model in our experiments. As this paper is inspired heavily
by the M3 and M4 Competitions, we kept the six benchmark methods used in these two
competitions by the organizer [24].

2.1. Existing Benchmarks in M4 Competitions

Below is a list of descriptions of the benchmarks utilized in the M4 Competition.

• Naïve 1. Naïve 1 assumes future values are identical to the last observation.
• Naïve S. Naïve S assumes future values are identical to the values from the last known

period, which, in our case, is 12 months.
• Naïve 2. Naïve 2 is similar to Naïve 1, except the data are seasonally adjusted by a

conventional multiplicative decomposition if tested seasonal. We performed a 90%
autocorrelation test at lag 12 for each series.

• Simple Exponential Smoothing (SES). SES forecasts future values as exponentially
decayed weighted averages of past observations [7].

• Holt. Holt’s linear trend method extends SES for data with a trend [7].
• Damped. The damped model dampens the trend in Holt’s method [7].

2.2. Conventional Decomposition and STL Decomposition

Here, we introduce two commonly used decomposition methods.

2.2.1. Conventional Decomposition

The conventional multiplicative classical decomposition algorithm for a series with
seasonal period m has four steps [7]:

1. Compute the trend component T̂t using a simple moving average method.

Eng. Proc. 2021, 5, 42 3 of 10

2. Detrend the time series: yt/T̂t.
3. Compute the seasonal component Ŝt by averaging the corresponding season’s de-

trended values and then adjusting to ensure that they add to m.
4. Compute the remainder component R̂t: R̂t = yt/(T̂tŜt).

2.2.2. STL Decomposition

STL decomposition consists of two recursive procedures: an inner loop and an outer
loop. The inner loop fits the trend and calculates the seasonal component. Every inner loop
consists of six steps in total:

1. Detrending. Calculate a detrended series yv − T(k)
v . For the first pass, T(0)

v = 0.
2. Cycle-Subseries Smoothing. Use LOESS to smooth the subseries of values at each

position of the seasonal cycle. The result is marked as C(k+1)
v .

3. Low-Pass Filtering of Smoothed Cycle-Subseries. This procedure consists of two MA

filters and a LOESS smoother. The result is marked as L(k+1)
v .

4. Detrending of Smoothed Cycle-Subseries. S(k+1)
v = C(k+1)

v − L(k+1)
v .

5. Deseasonalizing. yv − S(k+1)
v .

6. Trend Smoothing. Use LOESS to smooth the deseasonalized series to get the trend

component of this pass T(k+1)
v .

If any anomaly is detected, an outer loop will be applied and replace the LOESSs at
the second and sixth steps of the inner loop with the robust LOESS.

2.3. ARIMA, ETS, and Theta

• ARIMA. An ARIMA model assumes future values to be linear combinations of past
values and random errors, contributing to the AR and MA terms, respectively [2].
SARIMA (Seasonal ARIMA) is an extension of ARIMA that explicitly supports time
series data with a seasonal component. Once STL decomposition is applied, SARIMA
models degenerate into regular ARIMA models as STL handles the seasonal part.

• ETS. The ETS models are a family of time series models with an underlying state space
model consisting of a level component, a trend component (T), a seasonal component
(S), and an error term (E). Forecasts produced using exponential smoothing methods
are weighted averages of past observations, with the weights decaying exponentially
as the observations get older [7]. After concatenating STL on the ETS model, the full
ETS model degenerates into Holt’s method [7] as the seasonal equation is handled
by STL.

• Theta Method. The Theta method, initially proposed in 2000 by Assimakopou-
los et al. [9], performed exceptionally well in the M3 Competition and was used
as a benchmark in the M4 Competition. The Theta method is based on the concept
of modifying the local curvature of the time series through a coefficient θ, which is
applied directly to the second difference of the data [9]. Hyndman demonstrated that
the h-step-ahead forecast obtained by the Theta method is equivalent to an SES with
drift depending on the smoothing parameter value of SES, the horizon h, and the
data [11].

2.4. Machine Learning Methods

It is interesting to closely examine how machine learning methods perform in time
series forecasting tasks. Using the embedding strategy to transform this task into a su-
pervised learning problem [25], we can apply machine learning techniques to time series
forecasting tasks. The following briefly introduces the machine learning methods used in
this experimentation.

• k-NN. k-NN is a non-parametric method used for classification and regression. In
both cases, the input consists of the k closest training examples in the feature space.

Eng. Proc. 2021, 5, 42 4 of 10

In k-NN regression, the output is the property value for the object. This value is the
average of the values of k nearest neighbors based on the Euclidian distances.

• SVR. Support Vector Machine (SVM) is a successful method that tries to find a sepa-
ration hyperplane to maximize the margin between two classes, while SVR seeks a
hyperplane to minimize the margin between the support vectors and the hyperplane.

• CART. CART is one of the most generally used machine learning methods and can be
used for classification and regression. CART dichotomizes each feature recursively and
divides the input space into several cells. CART computes the probability distributions
of the corresponding prediction in it.

• RF. RF is an ensemble learning algorithm based on the Decision Tree [26]. Similar to
CART, Random Forest can be used for both classification and regression. It operates
by constructing many decision trees at training time and calculating the average
predictions from the individual trees.

• GP. A GP is a generalization of the Gaussian probability distribution [27]. It uses a
measure of homogeneity between points as a kernel function to predict an unknown
point’s value from the input training data. The result of its prediction contains the
value of the point and the uncertainty information, i.e., its one-dimensional Gaussian
distribution [22].

2.5. Deep Learning Methods

For the promising capacity of RNNs to memorize the long-term values, we decided
to test the deep learning models. Here, we present two structures of RNNs implemented
in our experimentation. The first one is the well-known CNNs stacked with the Long
Short-Term Memory (LSTM) cells, and the other one is the ConvLSTM structure proposed
by Xingjian Shi et al. in NeurIPS 2015 [28].

• CNN-LSTM. We use a 1D CNN to handle univariate time series. It has a hidden
convolutional layer iterating over a 1D sequence and follows a pooling layer to extract
the most salient features, which is then interpreted by a fully connected layer. Then,
we stack it with some LSTM layers, which is a widely used RNNs model that provides
a solution to the vanishing gradient problem for RNNs. It was proposed by Sepp
Hochreiter et al. in 1997 [29].

• Convolutional LSTM (ConvLSTM). ConvLSTM is an RNNs with convolutional
structures in both the input-to-state and state-to-state transitions. It determines the
future state of a certain cell in the grid by its local neighbors’ inputs and past states.
This is achieved using a convolution operator in the state-to-state and input-to-state
transitions [28]. Rather than reading and extracting the features with a CNN and then
interpreting them by an LSTM, ConvLSTM reads and interprets them at a time.

3. Experimentation Setup

This section presents how we organized and performed our experimentation.

3.1. Dataset

We selected 332 monthly series from the industry category which contains the highest
number of points per series from the M3 Competition dataset. We set 84 as the length of
the historical data and tested five different forecast horizons, i.e., 1, 6, 12, 18, and 24 months.
Thus, the total length required for an appropriate series is 108. The two series N2011
(78 points) and N2118 (104 points) were thus removed from the original 334-series dataset.

3.2. Pipeline for Machine Learning and Deep Learning Methods
3.2.1. Data Preprocessing

In our experimentation, three preprocessing techniques were conducted on all the series:

1. Deseasonalizing: A 90% autocorrelation test at lag 12 is performed to decide whether
the series is seasonal. We perform a conventional multiplicative decomposition or an
STL decomposition if the series is seasonal and extract the seasonal part.

Eng. Proc. 2021, 5, 42 5 of 10

2. Detrending: A one-order differencing is performed to eliminate the trend.
3. Scaling: A standardization step is applied to remove the mean and scale the features

to unit variance.

3.2.2. Supervised Learning Setting

A time series prediction problem can be transformed into a supervised learning task
that machine learning and deep learning methods can do. A commonly used approach is
to formulate a training set by lagging and stacking the historical series several times, which
is often referred to as the embedding technique in the R implementation [30].

Typically, for an h-step-ahead prediction problem, we can construct a training set
{X, Y} as follows:

X =


y1 y2 · · · yn
y2 y3 · · · yn+1
...

...
...

...
yN−n−h+1 yN−n−h+2 · · · yN−h

, Y =


yn+1 yn+2 · · · yn+h
yn+2 yn+3 · · · yn+h+1

...
...

...
...

yN−h+1 yN−h+2 · · · yN

, (1)

where N is the total length of the series, n is the number of times we lag the series, often
referred to as the window length. Each row in X represents a training example, while its
label corresponds to the vector in the same row in Y.

3.2.3. Results Post-Processing

The post-processing part comprises the inverted operations of the three preprocessing steps:

1. Rescaling: A rescaling step is performed by inverting the standardization.
2. Retrending: A cumulated summing is conducted to bring back the trend.
3. Reseasonalizing: A reseasonalization step is executed to integrate the seasonal com-

ponent into the prediction.

3.3. Pipeline for Statistical Methods

Statistical methods require no preprocessing or post-processing as the machine learn-
ing and deep learning methods demand. However, the same deseasonalization and
reseasonalization steps are necessary for the STL-based methods.

In our experimentation, we performed an STL decomposition and constructed the
ARIMA, ETS, and Theta models upon the seasonally adjusted series to compute the point
forecasts. It comprises the following three procedures:

1. Deseasonalizing. Compute the deseasonalized series by extracting the seasonal
component calculated by STL decomposition.

2. Point forecasting. Construct the ARIMA, ETS, and Theta models on the seasonally
adjusted data and calculate the forecasting values.

3. Reseasonalizing. Integrate the seasonal component back to calculate the final fore-
casting results.

One effect of applying the STL decomposition on statistical methods is that it cancels
these statistical methods’ intrinsic seasonality handlers.

3.4. Implementation and Parameters Tuning
3.4.1. Statistical Methods

All of the statistical methods, as well as their STL-based versions, were conducted
using the forecast-8.13 package [31] in R 4.0.2.

3.4.2. Machine Learning Methods

The machine learning methods and their STL-based versions were tested exploiting the
statsmodels-0.12.1 module [32] and the scikit-learn-0.23.2 [33] andsktime-0.4.2 [34]
packages in Python 3.8.5.

Eng. Proc. 2021, 5, 42 6 of 10

3.4.3. Deep Learning Methods

The two deep learning models were constructed in Python 3.8.5 with the Keras-2.4.0
framework [35] under TensorFlow-2.3.1 [36]. The hyperparameters were empirically tuned.

For CNN-LSTM, we stacked one CNN layer by two LSTM layers and three dense
layers. The CNN uses a ReLU activation function and has 16 filters, where each filter has a
kernel size of 5. Each LSTM layer has 128 units, and the two following dense layers have
32 and 16 units, respectively. The number of units of the last dense layer is identical to the
forecast horizons.

For ConvLSTM, we stacked two ConvLSTM layers, followed by three dense layers.
Each ConvLSTM layer has 128 filters where each filter has a shape of [1, 2]. The three
dense layers are identical to those of CNN-LSTM.

3.5. Evaluation Metrics

Three evaluation metrics were used in this experimentation.
We used the symmetric Mean Absolute Percentage Error (sMAPE) [37]. It has the

following formula: sMAPE = 2
k ∑k

t=1
|yt−ŷt |
|yt |+|ŷt | × 100%, where k is the forecasting horizon, yt

is the actual values at time t, and ŷt is the forecast produced by the model.
We also used the Mean Absolute Scaled Error (MASE) introduced by Rob Hyndman [38]:

MASE = 1
k

∑k
t=1 |yt−ŷt |

1
n−m ∑n

t=m+1 |yt−yt−m |
, where n is the number of the observations and m is the

number of periods per season.
The Overall Weighted Average (OWA) to Naïve 2 was also adopted [24]:

OWA =
1
2
(

sMAPEModel X
sMAPENaïve 2

+
MASEModel X
MASENaïve 2

) . (2)

4. Results and Discussion
4.1. Results

The results of our experimentation are presented in Table 1, Figures 1–3, and the
following contents.

Table 1 represents the forecast results of different methods on different forecast hori-
zons. Note that Naïve 2 method was chosen as the reference method for the OWA indicator,
meaning that OWA equals 1 whatever the horizon value h. At first glance, in Table 1, most
of the statistical methods give better forecasting results with respect to naive methods
(OWA < 1) than the machine learning methods (OWA > 1). This result confirms the
conclusion from the M3 Competition that sophisticated machine learning methods do not
assure a more accurate prediction than simple statistical methods.

This result becomes obvious in Figure 1, showing OWA ≤ 0.910 performance results
for the three advanced statistical methods (ARIMA, ETS, and Theta), by comparison with
Figure 2, showing OWA≥ 0.914 performance results for the five machine learning methods.
Above all, Figures 1 and 2 show the impact of STL decomposition as a preprocessing step
of statistical and ML methods on the forecasting performance results.

Significant improvement from STL decomposition was found for statistical methods.
Among all the tested STL-based methods, the STL-Theta method outperforms the other
methods on almost all forecast horizons. The STL-Theta method can even give a lower
OWA on a 24-month forecast horizon than the other methods on the 18-month one.

In Figure 2, we can find that the SVR model gives the best result. No significant
improvement from STL preprocessing was detected.

Figure 3 shows the mean and standard deviation of the gain brought by STL decom-
position. On average, STL improves the OWA of ARIMA by 1.5%, ETS by 0.9%, and Theta
by 5%, but it conducts a loss of OWA for machine learning methods. It harms SVR by 2.3%,
RF by 3.3%, GP by 2.3%, KNN by 2.2%, and CART by 1.1%.

Eng. Proc. 2021, 5, 42 7 of 10

Table 1. Forecast results of different methods on different forecast horizons.

Statistical
h = 1 h = 6 h = 12 h = 18 h = 24

sMAPE MASE OWA sMAPE MASE OWA sMAPE MASE OWA sMAPE MASE OWA sMAPE MASE OWA

Naive 12.536 1.006 1.071 16.011 1.280 1.177 16.238 1.312 1.152 17.480 1.395 1.153 18.044 1.456 1.143
sNaive 12.464 0.882 1.002 12.001 0.874 0.842 12.726 0.925 0.857 14.088 1.033 0.891 14.689 1.094 0.894
Naive2 11.704 0.939 1.000 13.813 1.071 1.000 14.374 1.118 1.000 15.431 1.189 1.000 16.053 1.254 1.000

SES 9.277 0.723 0.781 11.386 0.844 0.806 12.376 0.931 0.847 13.640 1.017 0.870 14.397 1.092 0.884
Holt 9.734 0.741 0.810 11.669 0.865 0.826 13.522 1.004 0.920 15.710 1.161 0.997 17.197 1.293 1.051

Damped 9.288 0.720 0.780 11.388 0.844 0.806 12.572 0.942 0.859 13.985 1.036 0.889 14.740 1.110 0.902
ARIMA 8.643 0.623 0.701 10.037 0.730 0.704 11.824 0.873 0.802 13.581 1.015 0.867 14.794 1.127 0.910

ETS 7.805 0.591 0.648 9.875 0.716 0.692 11.718 0.849 0.787 13.608 0.987 0.856 14.751 1.085 0.892
Theta 8.645 0.640 0.710 10.668 0.749 0.736 11.862 0.854 0.794 13.403 0.962 0.839 14.399 1.047 0.866

STL-ARIMA 8.245 0.604 0.674 9.915 0.717 0.693 11.755 0.856 0.792 13.457 0.993 0.854 14.481 1.093 0.887
STL-ETS 7.760 0.569 0.635 9.882 0.704 0.686 11.728 0.845 0.786 13.433 0.969 0.843 14.552 1.074 0.882

STL-Theta 7.963 0.580 0.649 9.502 0.678 0.660 11.177 0.801 0.747 12.817 0.921 0.803 13.891 1.011 0.836

ML & DL
h = 1 h = 6 h = 12 h = 18 h = 24

sMAPE MASE OWA sMAPE MASE OWA sMAPE MASE OWA sMAPE MASE OWA sMAPE MASE OWA

KNN 13.636 0.965 1.096 16.070 1.166 1.126 17.781 1.326 1.212 20.421 1.497 1.291 21.741 1.610 1.319
STL-KNN 15.318 1.077 1.228 18.359 1.390 1.313 17.980 1.306 1.210 22.513 1.698 1.444 22.154 1.610 1.332

SVR 11.253 0.855 0.936 12.732 0.971 0.914 14.712 1.116 1.011 17.485 1.284 1.107 19.526 1.429 1.178
STL-SVR 12.978 1.006 1.090 15.285 1.225 1.125 14.919 1.109 1.015 19.338 1.484 1.251 19.589 1.410 1.172

CART 14.080 1.025 1.147 19.081 1.377 1.334 25.490 1.930 1.750 30.934 2.314 1.975 35.956 2.596 2.155
STL-CART 15.820 1.191 1.310 21.715 1.660 1.561 25.157 1.862 1.708 32.285 2.446 2.075 35.715 2.537 2.124

RF 11.756 0.898 0.980 13.668 1.027 0.974 15.432 1.186 1.067 17.831 1.369 1.153 19.692 1.496 1.210
STL-RF 13.667 1.054 1.145 16.401 1.289 1.195 15.880 1.177 1.079 20.237 1.581 1.321 19.947 1.465 1.205

GP 12.540 0.972 1.053 14.268 1.093 1.027 15.528 1.195 1.075 17.395 1.313 1.116 18.720 1.418 1.148
STL-GP 14.163 1.120 1.201 16.950 1.351 1.244 15.782 1.187 1.080 19.624 1.526 1.278 18.974 1.408 1.152

CNN-LSTM 13.105 0.985 1.084 15.439 1.176 1.108 16.233 1.213 1.107 17.811 1.332 1.137 18.821 1.423 1.154
ConvLSTM 12.976 0.929 1.049 16.257 1.235 1.165 17.121 1.283 1.169 18.926 1.399 1.202 19.372 1.441 1.178

Figure 1. OWAs for STL decomposition on statistical models.

Figure 2. STL decomposition on ML models.

Eng. Proc. 2021, 5, 42 8 of 10

ARIMA ETS Theta SVR Random Forest Gaussian Process KNN CART

–0.08

–0.06

–0.04

–0.02

0.00

0.02
0.04

0.06

0.08

0.10

Figure 3. Boxplot of OWA gain from STL for each method.

4.2. Discussion

It is interesting to note from the results in Figure 3 that CART performs the worst
among all these methods, which is easy to understand as CART is a single forecaster.
Its ensemble method Random Forest performs much better in terms of the precision of
forecasting. At the same time, it consumes the most time.

The initial objective of this study was to determine whether STL decomposition can
be helpful as a preprocessing step for time series forecasting methods. Our results confirm
using STL decomposition as a preprocessing method can effectively improve the statistical
methods’ performance, which is consistent with Theodosiou [23] using M1 Competition
data, but, for machine learning methods, it can be harmful.

A possible explanation for this might be extracting the seasonal information from the
series can affect the features to be modeled. For statistical models, their intrinsic ability for
handling the seasonality might be worse than the STL decomposition. For the machine
learning models, it could be easier to model seasonal data. Further research is required to
confirm this hypothesis.

5. Conclusions

The present study was designed to determine the effect of using STL decomposition
as a preprocessing step on different forecasting strategies. The results show some vast
differences between these methods. Among all tested models, the STL decomposition-
based Theta method is the best one. In the meantime, the STL decomposition can benefit
the statistical methods by providing a more robust decomposition procedure than their
intrinsic mechanism. The machine learning methods tested in this experimentation failed
to outperform most statistical methods but still have some potentials for improvement. We
can perform other preprocessing methods without harming the natural feature of the time
series. More research is required in the future. For deep learning methods, as there are so
many architectures and combinations of hyperparameters for neural networks, the two
tested architectures in this experimentation may not be the optimal solutions. At the same
time, there are many architectures more suitable for short sequence learning and worthy of
further research.

Author Contributions: Conceptualization, Z.O., P.R. and M.J.; methodology, Z.O., P.R. and M.J.; soft-
ware, Z.O.; validation, Z.O., P.R. and M.J.; formal analysis, Z.O., P.R. and M.J.; investigation, Z.O. and
P.R.; resources, Z.O.; data curation, Z.O.; writing—original draft preparation, Z.O.; writing—review
and editing, Z.O., P.R. and M.J.; visualization, Z.O.; supervision, P.R. and M.J.; and project adminis-
tration, Z.O. and P.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Association Nationale de la Recherche et de la Technologie
(CIFRE 2019/0551).

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Eng. Proc. 2021, 5, 42 9 of 10

References
1. Zhang, G. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50. doi:10.1016/S0925-

2312(01)00702-0. [CrossRef]
2. Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; John Wiley & Sons, Inc.:

Hoboken, NJ, USA, 2004; Volume 20.
3. Kihoro, J.; Otieno, R.; Wafula, C. Seasonal time series forecasting: A comparative study of ARIMA and ANN models. Afr. J. Sci.

Technol. 2004, 5. [CrossRef]
4. Brown, R.G. Statistical Forecasting for Inventory Control; McGraw/Hill: New York, NY, USA, 1959.
5. Holt, C.C. Forecasting seasonals and trends by exponentially weighted moving averages. Int. J. Forecast. 2004, 20.

doi:10.1016/j.ijforecast.2003.09.015. [CrossRef]
6. Winters, P.R. Forecasting sales by exponentially weighted moving averages. Manag. Sci. 1960, 6, 324–342. [CrossRef]
7. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018.
8. Hyndman, R.J. A brief history of forecasting competitions. Int. J. Forecast. 2020, 36, 7–14. [CrossRef]
9. Assimakopoulos, V.; Nikolopoulos, K. The theta model: A decomposition approach to forecasting. Int. J. Forecast. 2000, 16,

521–530. [CrossRef]
10. Thomakos, D.D.; Nikolopoulos, K. Forecasting multivariate time series with the theta method. J. Forecast. 2015, 34, 220–229. [CrossRef]
11. Hyndman, R.J.; Billah, B. Unmasking the Theta method. Int. J. Forecast. 2003, 19, 287–290. [CrossRef]
12. Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73.
13. Szegedy, C.; Toshev, A.; Erhan, D. Deep neural networks for object detection. In Proceedings of the 26th International Conference on

Neural Information Processing Systems—Volume 2; Curran Associates Inc.: Red Hook, NY, USA, 2013.
14. Graves, A. Supervised sequence labelling. In Supervised Sequence Labelling with Recurrent Neural Networks; Springer:

Berlin/Heidelberg, Germany, 2012.
15. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A survey of autonomous driving: Common practices and emerging technologies.

IEEE Access 2020, 8. [CrossRef]
16. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the

25th International Conference on Neural Information Processing Systems—Volume 1; Curran Associates Inc.: Red Hook, NY, USA, 2012.
17. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the 27th International

Conference on Neural Information Processing Systems—Volume 2; Curran Associates Inc.: Red Hook, NY, USA, 2014.
18. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.R.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N.; et al.

Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process.
Mag. 2012, 29, 82–97. [CrossRef]

19. Lapedes, A.; Farber, R. Nonlinear Signal Processing Using Neural Networks: Prediction and System Modelling; Technical Report (No.
LA-UR-87-2662; CONF-8706130-4); Los Alamos National Laboratory: Los Alamos, NM, USA, 1987.

20. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science &
Business Media: Berlin/Heidelberg, Germany, 2009.

21. Ahmed, N.K.; Atiya, A.F.; Gayar, N.E.; El-Shishiny, H. An empirical comparison of machine learning models for time series
forecasting. Econom. Rev. 2010, 29. doi:10.1080/07474938.2010.481556. [CrossRef]

22. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. Statistical and Machine Learning forecasting methods: Concerns and ways
forward. PLoS ONE 2018, 13, e0194889. [CrossRef]

23. Theodosiou, M. Forecasting monthly and quarterly time series using STL decomposition. Int. J. Forecast. 2011, 27, 1178–1195.
doi:10.1016/j.ijforecast.2010.11.002. [CrossRef]

24. Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J.
Forecast. 2020, 36, 54–74. [CrossRef]

25. Bontempi, G.; Taieb, S.B.; Le Borgne, Y.A. Machine learning strategies for time series forecasting. In European Business Intelligence
Summer School; Springer: Berlin/Heidelberg, Germany, 2012.

26. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
27. Rasmussen, C.E. Gaussian processes in machine learning. In Summer School on Machine Learning; Springer: Berlin/Heidelberg,

Germany, 2003.
28. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for

precipitation nowcasting. In Proceedings of the 28th International Conference on Neural Information Processing Systems—Volume 1;
Curran Associates Inc.: Red Hook, NY, USA, 2015.

29. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
30. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020.
31. Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 27.

doi:10.18637/jss.v027.i03. [CrossRef]
32. Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in

Science Conference (SciPy 2010), Austin, TX, USA, 28 June–3 July 2010.
33. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

http://doi.org/10.1016/S0925-2312(01)00702-0
http://dx.doi.org/10.4314/ajst.v5i2.15330
http://dx.doi.org/10.1016/j.ijforecast.2003.09.015
http://dx.doi.org/10.1287/mnsc.6.3.324
http://dx.doi.org/10.1016/j.ijforecast.2019.03.015
http://dx.doi.org/10.1016/S0169-2070(00)00066-2
http://dx.doi.org/10.1002/for.2334
http://dx.doi.org/10.1016/S0169-2070(01)00143-1
http://dx.doi.org/10.1109/ACCESS.2020.2983149
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1080/07474938.2010.481556
http://dx.doi.org/10.1371/journal.pone.0194889
http://dx.doi.org/10.1016/j.ijforecast.2010.11.002
http://dx.doi.org/10.1016/j.ijforecast.2019.04.014
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.18637/jss.v027.i03

Eng. Proc. 2021, 5, 42 10 of 10

34. Löning, M.; Bagnall, A.; Ganesh, S.; Kazakov, V.; Lines, J.; Király, F.J. sktime: A unified interface for machine learning with time
series. arXiv 2019, arXiv:1909.07872.

35. Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 13 October 2020).
36. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 13 October 2020).
37. Makridakis, S. Accuracy measures: Theoretical and practical concerns. Int. J. Forecast. 1993, 9, 527–529. [CrossRef]
38. Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [CrossRef]

https://keras.io
tensorflow.org
http://dx.doi.org/10.1016/0169-2070(93)90079-3
http://dx.doi.org/10.1016/j.ijforecast.2006.03.001

	Introduction
	Methods
	Existing Benchmarks in M4 Competitions
	Conventional Decomposition and STL Decomposition
	Conventional Decomposition
	STL Decomposition

	ARIMA, ETS, and Theta
	Machine Learning Methods
	Deep Learning Methods

	Experimentation Setup
	Dataset
	Pipeline for Machine Learning and Deep Learning Methods
	Data Preprocessing
	Supervised Learning Setting
	Results Post-Processing

	Pipeline for Statistical Methods
	Implementation and Parameters Tuning
	Statistical Methods
	Machine Learning Methods
	Deep Learning Methods

	Evaluation Metrics

	Results and Discussion
	Results
	Discussion

	Conclusions
	References

